{"title":"Experimental and Theoretical Investigations of the Inhibition of the Corrosion of Mild Steel in HCl by Synthesized Piperazin Derivatives","authors":"Ponnusamy Singaravelu, Balu Anand, S Loganathan, Nnabuk Okon Eddy, Rajni Garg","doi":"10.1134/S2070205124702034","DOIUrl":null,"url":null,"abstract":"<p>In this study, two organic molecules namely, [4-(4-aminobenzoyl)-piperazin-1-yl)] furan-2-yl) methanone (4-4-ABPFM) and 4-(4-aminophenylpiperazin-1-yl) furan-2-yl) methanone (4-4-APPFM) were synthesized and characterized using FTIR, UV–visible, thin layer chromatography, C-13 and proton NMR. The corrosion inhibition efficiencies of these molecules were tested using weight loss, polarization and AC impedance methods. Quantum chemical calculations (which included local selectivity, global reactivity and Monte Carlo simulation) were also implemented to complement the experimental data. The results obtained provided information confirmed that the synthesized compound has some inherent corrosion inhibition potentials due to the presence of aromatic rings, pi-electron systems, heteroatoms and corrosion structure parameters. The maximum inhibition efficiencies were 95 and 91% for 4,4-ABPFM and 4,4-APPFM respectively. The ideal fitness of the Langmuir isotherm with slope and <i>R</i><sup>2</sup> values approximating unity was also upheld. Theoretical calculation results showed strong accord to experimental values and supported higher efficiency for 4,4-ABPFM than 4,4-APPFM. Monte Carlo simulation showed that the adsorption energy is negative and also supported evidence drawn from the experiment, which is the spontaneous adsorption of the inhibitors on the metal surface.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"60 4","pages":"777 - 794"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205124702034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two organic molecules namely, [4-(4-aminobenzoyl)-piperazin-1-yl)] furan-2-yl) methanone (4-4-ABPFM) and 4-(4-aminophenylpiperazin-1-yl) furan-2-yl) methanone (4-4-APPFM) were synthesized and characterized using FTIR, UV–visible, thin layer chromatography, C-13 and proton NMR. The corrosion inhibition efficiencies of these molecules were tested using weight loss, polarization and AC impedance methods. Quantum chemical calculations (which included local selectivity, global reactivity and Monte Carlo simulation) were also implemented to complement the experimental data. The results obtained provided information confirmed that the synthesized compound has some inherent corrosion inhibition potentials due to the presence of aromatic rings, pi-electron systems, heteroatoms and corrosion structure parameters. The maximum inhibition efficiencies were 95 and 91% for 4,4-ABPFM and 4,4-APPFM respectively. The ideal fitness of the Langmuir isotherm with slope and R2 values approximating unity was also upheld. Theoretical calculation results showed strong accord to experimental values and supported higher efficiency for 4,4-ABPFM than 4,4-APPFM. Monte Carlo simulation showed that the adsorption energy is negative and also supported evidence drawn from the experiment, which is the spontaneous adsorption of the inhibitors on the metal surface.
期刊介绍:
Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.