Mariana Costa Souza, Ana Paula Bispo Gonçalves, Emanoel Igor da Silva Oliveira, Juscivaldo Passos dos Santos, Lídia Kunz Lazzari, Ademir José Zattera, Nadia Mamede José
{"title":"Production and characterization of polymeric nanocomposite foams based on starch and cellulose nanofibers from oil palm mesocarp fiber","authors":"Mariana Costa Souza, Ana Paula Bispo Gonçalves, Emanoel Igor da Silva Oliveira, Juscivaldo Passos dos Santos, Lídia Kunz Lazzari, Ademir José Zattera, Nadia Mamede José","doi":"10.1007/s13204-025-03082-1","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for sustainable and eco-friendly materials has promoted studies over the years to explore different polymeric materials that meet requirements such as biodegradability and sustainability. In this context, biopolymer materials based on cellulose nanoparticles and starch from different botanical sources have been investigated, aiming to achieve satisfactory performance. The present study aims to develop and characterize cassava starch foams based on density, scanning electron microscopy (SEM), and three-point flexure tests, and to evaluate the effect of cellulose nanofibers obtained from palm mesocarp fibers using the ultrafine friction grinding method after different processing times, characterized by X-ray diffractometry (XRD), microscopy, and chemical composition, as a reinforcing filler. The chemical composition and scanning electron microscopy revealed the effectiveness of the cellulose isolation process, with the analysis of the chemical composition revealing a cellulose content of 55.70% in the fibers after pulping and bleaching, in addition to changes in the visual characteristics of the material after the process aimed at isolating the cellulose. After grinding, XRD showed an increase in crystallinity (76.1% at the maximum grinding time), along with typical microscopy images of cellulose nanofibers. The analysis of the obtained nanocomposites provided insights into the role of these nanostructures in the thermo-expanded starch matrix, indicating that the nanofibers promoted changes such as an increase in mechanical properties and crystallinity, which contributed to improving overall mechanical performance. A 67.48% increase in flexural strength was achieved for the formulation with cellulose nanofibers that underwent 150 min of grinding, without causing major variations in density.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 2","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03082-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for sustainable and eco-friendly materials has promoted studies over the years to explore different polymeric materials that meet requirements such as biodegradability and sustainability. In this context, biopolymer materials based on cellulose nanoparticles and starch from different botanical sources have been investigated, aiming to achieve satisfactory performance. The present study aims to develop and characterize cassava starch foams based on density, scanning electron microscopy (SEM), and three-point flexure tests, and to evaluate the effect of cellulose nanofibers obtained from palm mesocarp fibers using the ultrafine friction grinding method after different processing times, characterized by X-ray diffractometry (XRD), microscopy, and chemical composition, as a reinforcing filler. The chemical composition and scanning electron microscopy revealed the effectiveness of the cellulose isolation process, with the analysis of the chemical composition revealing a cellulose content of 55.70% in the fibers after pulping and bleaching, in addition to changes in the visual characteristics of the material after the process aimed at isolating the cellulose. After grinding, XRD showed an increase in crystallinity (76.1% at the maximum grinding time), along with typical microscopy images of cellulose nanofibers. The analysis of the obtained nanocomposites provided insights into the role of these nanostructures in the thermo-expanded starch matrix, indicating that the nanofibers promoted changes such as an increase in mechanical properties and crystallinity, which contributed to improving overall mechanical performance. A 67.48% increase in flexural strength was achieved for the formulation with cellulose nanofibers that underwent 150 min of grinding, without causing major variations in density.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.