New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2025-02-18 DOI:10.1002/hyp.70080
Anne Holt, Hilary McMillan
{"title":"New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales","authors":"Anne Holt,&nbsp;Hilary McMillan","doi":"10.1002/hyp.70080","DOIUrl":null,"url":null,"abstract":"<p>In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed-scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional-to-global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large-sample attribute datasets strengthens continental-scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large-sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70080","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed-scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional-to-global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large-sample attribute datasets strengthens continental-scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large-sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales Developing a Two-Dimensional Semi-Analytical Solution on a Plan View for a Consecutive Divergent Tracer Test Considering Regional Groundwater Flow Enhanced Spatial Dry–Wet Contrast in the Future of the Qinghai–Tibet Plateau Urban Snowmelt Runoff Responses to the Temperature-Hydraulic Conductivity Relation in a Cold Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1