S. S. Mendis, R. P. Udawatta, M. P. Davis, B. Gurmessa, M. Salceda, M. E. Herget
{"title":"Cover crop and tillage effects on soil microbial communities in a corn cropping system","authors":"S. S. Mendis, R. P. Udawatta, M. P. Davis, B. Gurmessa, M. Salceda, M. E. Herget","doi":"10.1002/agg2.70054","DOIUrl":null,"url":null,"abstract":"<p>Soil microbial communities have numerous soil ecological and physiological functions. However, knowledge is lacking on the interaction effects of no-till and cover crops (CC) practices on these soil health indicators. This study evaluated the effects of CC and tillage on soil microbial communities in a corn (<i>Zea mays</i> L.) system. The study was conducted for 2 consecutive years on plots allotted to three practices: (1) no-till and cover crop (NC), (2) conventional till and no cover crop (CN), and (3) no-till no cover crop (NN). A grass strip (G) was used as a reference, assuming it was subjected to the least disturbance. Surface (0–5 cm and 5–10 cm) soils were sampled over 2 years in April and October. Soil microbial biomass was measured using phospholipid fatty acid (PLFA) analysis. Seasonal variations indicated greater microbial biomass in fall than in spring. The G and NC significantly increased soil microbial biomass at both depths compared to CN and NN during fall 2021 sampling and numerically in fall 2020, where greater changes were observed at 0- to 5-cm depth. In fall 2021 sampling, NC practices had 65%–75% more total microbial biomass than CN and NN at both depths (<i>p</i> < 0.001), with total bacterial biomass 70% greater (<i>p</i> < 0.002) and total fungal biomass 75%–85% greater (<i>p</i> < 0.007). NC also showed 85% more actinomycetes biomass than CN at 5- to 10-cm depth (<i>p</i> < 0.05). The study concluded that soil microbial communities significantly improved after two CC seasons, with higher microbial biomass in fall compared to spring.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"8 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil microbial communities have numerous soil ecological and physiological functions. However, knowledge is lacking on the interaction effects of no-till and cover crops (CC) practices on these soil health indicators. This study evaluated the effects of CC and tillage on soil microbial communities in a corn (Zea mays L.) system. The study was conducted for 2 consecutive years on plots allotted to three practices: (1) no-till and cover crop (NC), (2) conventional till and no cover crop (CN), and (3) no-till no cover crop (NN). A grass strip (G) was used as a reference, assuming it was subjected to the least disturbance. Surface (0–5 cm and 5–10 cm) soils were sampled over 2 years in April and October. Soil microbial biomass was measured using phospholipid fatty acid (PLFA) analysis. Seasonal variations indicated greater microbial biomass in fall than in spring. The G and NC significantly increased soil microbial biomass at both depths compared to CN and NN during fall 2021 sampling and numerically in fall 2020, where greater changes were observed at 0- to 5-cm depth. In fall 2021 sampling, NC practices had 65%–75% more total microbial biomass than CN and NN at both depths (p < 0.001), with total bacterial biomass 70% greater (p < 0.002) and total fungal biomass 75%–85% greater (p < 0.007). NC also showed 85% more actinomycetes biomass than CN at 5- to 10-cm depth (p < 0.05). The study concluded that soil microbial communities significantly improved after two CC seasons, with higher microbial biomass in fall compared to spring.