An ovary-intact postmenopausal HFpEF mouse model; menopause is more than just estrogen deficiency.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS American journal of physiology. Heart and circulatory physiology Pub Date : 2025-04-01 Epub Date: 2025-02-18 DOI:10.1152/ajpheart.00575.2024
Mei Methawasin, Joshua Strom, Vito A Marino, Jochen Gohlke, Julia Muldoon, Shelby R Herrick, Robbert van der Piji, John P Konhilas, Henk Granzier
{"title":"An ovary-intact postmenopausal HFpEF mouse model; menopause is more than just estrogen deficiency.","authors":"Mei Methawasin, Joshua Strom, Vito A Marino, Jochen Gohlke, Julia Muldoon, Shelby R Herrick, Robbert van der Piji, John P Konhilas, Henk Granzier","doi":"10.1152/ajpheart.00575.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of heart failure with preserved ejection fraction (HFpEF) in women significantly increases following menopause. This trend cannot solely be attributed to chronological aging, as evidenced by the more gradual increase in prevalence among men, suggesting that menopause is a provocative event for HFpEF. However, the underlying mechanisms remain elusive and challenging to investigate in human subjects; moreover, an attempt to create HFpEF in ovariectomized (OVX) mice was unsuccessful. In this study, we created an animal model that resembles HFpEF in women undergoing natural menopause. We used 4-vinylcyclohexene dioxide (VCD) to induce \"ovary-intact\" menopause, combined with the 2hit regimen (HFpEF inducing regimen) to model postmenopausal HFpEF. The female-VCD-2hit mice demonstrate diastolic dysfunction. At the left ventricle (LV) levels, the increased stiffness coefficient of end-diastolic pressure-volume relation (EDPVR), elevated LV end-diastolic pressure, and increased relaxation time constant indicate a heightened LV stiffness, delayed relaxation, and elevated LV filling pressure. At the cardiomyocyte level, the female-VCD-2hit mice exhibit increased cellular diastolic stiffness and delayed relaxation, suggesting that the observed LV dysfunction is derived from the cardiomyocytes. In addition, plasma N-terminal pro-β-type natriuretic peptide (NT-pro-BNP) levels were elevated, whereas Xbp1s transcript levels were reduced, further supporting the existence of HFpEF. Plasma-free testosterone was increased in VCD mice compared with premenopausal and OVX models. Further studies are required to determine whether the relative increase in testosterone is the factor driving HFpEF susceptibility in VCD mice. Ovary-intact postmenopausal status makes female mice vulnerable to HFpEF development. The VCD-2hit model develops a robust HFpEF-like phenotype and is suitable for studying female HFpEF.<b>NEW & NOTEWORTHY</b> Although ovariectomized mice were observed to be resistant to developing HFpEF, ovary-intact postmenopausal mice exhibited an HFpEF-like phenotype under metabolic stress conditions. The increased susceptibility of ovary-intact postmenopausal mice may be due to relative androgen excess conditions, as postmenopausal ovaries retain the ability to secrete androgens. Menopause should be viewed as the imbalance of estrogen and androgens rather than merely an estrogen deficiency, and the role of female androgens in postmenopausal HFpEF warrants further investigation.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H719-H733"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00575.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of heart failure with preserved ejection fraction (HFpEF) in women significantly increases following menopause. This trend cannot solely be attributed to chronological aging, as evidenced by the more gradual increase in prevalence among men, suggesting that menopause is a provocative event for HFpEF. However, the underlying mechanisms remain elusive and challenging to investigate in human subjects; moreover, an attempt to create HFpEF in ovariectomized (OVX) mice was unsuccessful. In this study, we created an animal model that resembles HFpEF in women undergoing natural menopause. We used 4-vinylcyclohexene dioxide (VCD) to induce "ovary-intact" menopause, combined with the 2hit regimen (HFpEF inducing regimen) to model postmenopausal HFpEF. The female-VCD-2hit mice demonstrate diastolic dysfunction. At the left ventricle (LV) levels, the increased stiffness coefficient of end-diastolic pressure-volume relation (EDPVR), elevated LV end-diastolic pressure, and increased relaxation time constant indicate a heightened LV stiffness, delayed relaxation, and elevated LV filling pressure. At the cardiomyocyte level, the female-VCD-2hit mice exhibit increased cellular diastolic stiffness and delayed relaxation, suggesting that the observed LV dysfunction is derived from the cardiomyocytes. In addition, plasma N-terminal pro-β-type natriuretic peptide (NT-pro-BNP) levels were elevated, whereas Xbp1s transcript levels were reduced, further supporting the existence of HFpEF. Plasma-free testosterone was increased in VCD mice compared with premenopausal and OVX models. Further studies are required to determine whether the relative increase in testosterone is the factor driving HFpEF susceptibility in VCD mice. Ovary-intact postmenopausal status makes female mice vulnerable to HFpEF development. The VCD-2hit model develops a robust HFpEF-like phenotype and is suitable for studying female HFpEF.NEW & NOTEWORTHY Although ovariectomized mice were observed to be resistant to developing HFpEF, ovary-intact postmenopausal mice exhibited an HFpEF-like phenotype under metabolic stress conditions. The increased susceptibility of ovary-intact postmenopausal mice may be due to relative androgen excess conditions, as postmenopausal ovaries retain the ability to secrete androgens. Menopause should be viewed as the imbalance of estrogen and androgens rather than merely an estrogen deficiency, and the role of female androgens in postmenopausal HFpEF warrants further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
期刊最新文献
Elevated frame rates during exercise echocardiography improve speckle-tracking success rate and augment deformation values. Immune checkpoint inhibitor-associated myocarditis: a historical and comprehensive review. An ovary-intact postmenopausal HFpEF mouse model; menopause is more than just estrogen deficiency. Role of shear stress-induced red blood cell released ATP in atherosclerosis. Prognostic circulatory signature metabolites of stable versus unstable angina: an application of NMR spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1