Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-02-17 DOI:10.1186/s12859-025-06064-w
Jiashan Li, Xinqi Gong
{"title":"Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity.","authors":"Jiashan Li, Xinqi Gong","doi":"10.1186/s12859-025-06064-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The binding between proteins and ligands plays a crucial role in the field of drug discovery. However, this area currently faces numerous challenges. On one hand, existing methods are constrained by the limited availability of labeled data, often performing inadequately when addressing complex protein-ligand interactions. On the other hand, many models struggle to effectively capture the flexible variations and relative spatial relationships between proteins and ligands. These issues not only significantly hinder the advancement of protein-ligand binding research but also adversely affect the accuracy and efficiency of drug discovery. Therefore, in response to these challenges, our study aims to enhance predictive capabilities through innovative approaches, providing more reliable support for drug discovery efforts.</p><p><strong>Methods: </strong>This study leverages a pre-trained model with spatial awareness to enhance the prediction of protein-ligand binding affinity. By perturbing the structures of small molecules in a manner consistent with physical constraints and employing self-supervised tasks, we improve the representation of small molecule structures, allowing for better adaptation to affinity predictions. Meanwhile, our approach enables the identification of potential binding sites on proteins.</p><p><strong>Results: </strong>Our model demonstrates a significantly higher correlation coefficient in binding affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, and Merck FEP benchmarks confirms the model's robustness and strong generalization across diverse datasets. Additionally, the model achieves over 95% in classification ROC for binding site identification, underscoring its high accuracy in pinpointing protein-ligand interaction regions.</p><p><strong>Conclusion: </strong>This research presents a novel approach that not only enhances the accuracy of binding affinity predictions but also facilitates the identification of binding sites, showcasing the potential of pre-trained models in computational drug design. Data and code are available at https://github.com/MIALAB-RUC/SableBind .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"55"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06064-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The binding between proteins and ligands plays a crucial role in the field of drug discovery. However, this area currently faces numerous challenges. On one hand, existing methods are constrained by the limited availability of labeled data, often performing inadequately when addressing complex protein-ligand interactions. On the other hand, many models struggle to effectively capture the flexible variations and relative spatial relationships between proteins and ligands. These issues not only significantly hinder the advancement of protein-ligand binding research but also adversely affect the accuracy and efficiency of drug discovery. Therefore, in response to these challenges, our study aims to enhance predictive capabilities through innovative approaches, providing more reliable support for drug discovery efforts.

Methods: This study leverages a pre-trained model with spatial awareness to enhance the prediction of protein-ligand binding affinity. By perturbing the structures of small molecules in a manner consistent with physical constraints and employing self-supervised tasks, we improve the representation of small molecule structures, allowing for better adaptation to affinity predictions. Meanwhile, our approach enables the identification of potential binding sites on proteins.

Results: Our model demonstrates a significantly higher correlation coefficient in binding affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, and Merck FEP benchmarks confirms the model's robustness and strong generalization across diverse datasets. Additionally, the model achieves over 95% in classification ROC for binding site identification, underscoring its high accuracy in pinpointing protein-ligand interaction regions.

Conclusion: This research presents a novel approach that not only enhances the accuracy of binding affinity predictions but also facilitates the identification of binding sites, showcasing the potential of pre-trained models in computational drug design. Data and code are available at https://github.com/MIALAB-RUC/SableBind .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Estimation of mosaic loss of Y chromosome cell fraction with genotyping arrays lacking coverage in the pseudoautosomal region. A Dirichlet-multinomial mixed model for determining differential abundance of mutational signatures. BHCox: Bayesian heredity-constrained Cox proportional hazards models for detecting gene-environment interactions. MFCADTI: improving drug-target interaction prediction by integrating multiple feature through cross attention mechanism. Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1