Weimin Zhu, Xiaohan Ding, Hong-Bin Shen, Xiaoyong Pan
{"title":"Identifying RNA-small molecule binding sites using geometric deep learning with language models.","authors":"Weimin Zhu, Xiaohan Ding, Hong-Bin Shen, Xiaoyong Pan","doi":"10.1016/j.jmb.2025.169010","DOIUrl":null,"url":null,"abstract":"<p><p>RNAs are emerging as promising therapeutic targets, yet identifying small molecules that bind to them remains a significant challenge in drug discovery. This underscores the crucial role of computational modeling in predicting RNA-small molecule binding sites. However, accurate and efficient computational methods for identifying these interactions are still lacking. Recently, advances in large language models (LLMs), previously successful in DNA and protein research, have spurred the development of RNA-specific LLMs. These models leverage vast unlabeled RNA sequences to autonomously learn semantic representations with the goal of enhancing downstream tasks, particularly those constrained by limited annotated data. Here, we develop RNABind, an embedding-informed geometric deep learning framework to detect RNA-small molecule binding sites from RNA structures. RNABind integrates RNA LLMs into advanced geometric deep learning networks, which encodes both RNA sequence and structure information. To evaluate RNABind, we first compile the largest RNA-small molecule interaction dataset from the entire multi-chain complex structure instead of single-chain RNAs. Extensive experiments demonstrate that RNABind outperforms existing state-of-the-art methods. Besides, we conduct an extensive experimental evaluation of eight pre-trained RNA LLMs, assessing their performance on the binding site prediction task within a unified experimental protocol. In summary, RNABind provides a powerful tool on exploring RNA-small molecule binding site prediction, which paves the way for future innovations in the RNA-targeted drug discovery.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169010"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNAs are emerging as promising therapeutic targets, yet identifying small molecules that bind to them remains a significant challenge in drug discovery. This underscores the crucial role of computational modeling in predicting RNA-small molecule binding sites. However, accurate and efficient computational methods for identifying these interactions are still lacking. Recently, advances in large language models (LLMs), previously successful in DNA and protein research, have spurred the development of RNA-specific LLMs. These models leverage vast unlabeled RNA sequences to autonomously learn semantic representations with the goal of enhancing downstream tasks, particularly those constrained by limited annotated data. Here, we develop RNABind, an embedding-informed geometric deep learning framework to detect RNA-small molecule binding sites from RNA structures. RNABind integrates RNA LLMs into advanced geometric deep learning networks, which encodes both RNA sequence and structure information. To evaluate RNABind, we first compile the largest RNA-small molecule interaction dataset from the entire multi-chain complex structure instead of single-chain RNAs. Extensive experiments demonstrate that RNABind outperforms existing state-of-the-art methods. Besides, we conduct an extensive experimental evaluation of eight pre-trained RNA LLMs, assessing their performance on the binding site prediction task within a unified experimental protocol. In summary, RNABind provides a powerful tool on exploring RNA-small molecule binding site prediction, which paves the way for future innovations in the RNA-targeted drug discovery.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.