Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2025-02-17 DOI:10.1111/jipb.13857
Jingxin Wang, Liwei Liu, Kunhui He, Takele Weldu Gebrewahid, Shang Gao, Qingzhen Tian, Zhanyi Li, Yiqun Song, Yiliang Guo, Yanwei Li, Qinxin Cui, Luyan Zhang, Jiankang Wang, Changling Huang, Liang Li, Tingting Guo, Huihui Li
{"title":"Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data.","authors":"Jingxin Wang, Liwei Liu, Kunhui He, Takele Weldu Gebrewahid, Shang Gao, Qingzhen Tian, Zhanyi Li, Yiqun Song, Yiliang Guo, Yanwei Li, Qinxin Cui, Luyan Zhang, Jiankang Wang, Changling Huang, Liang Li, Tingting Guo, Huihui Li","doi":"10.1111/jipb.13857","DOIUrl":null,"url":null,"abstract":"<p><p>Incorporating genotype-by-environment (GE) interaction effects into genomic prediction (GP) models with multi-environment climate data can improve selection accuracy to accelerate crop breeding but has received little research attention. Here, we conducted a cross-region GP study of grain moisture content (GMC) and grain yield (GY) in maize hybrids in two major Chinese growing regions using data for 19 climatic factors across 34 environments in 2020 and 2021. Predictions were conducted in 2,126 hybrids generated from 475 maize inbred lines, using 9,355 single nucleotide polymorphism markers for genotyping. Models based on genomic best linear unbiased prediction (GBLUP) incorporating GE interaction effects of 19 climatic factors associated with day length, transpiration, temperature, and radiation (GBLUP-GE<sub>19CF</sub>) trained on whole data set outperformed the traditional GBLUP or BayesB models in predicting GMC or GY by 10-fold cross-validation, achieving prediction accuracies of 0.731 and 0.331, respectively. To refine the climate data, we examined 84 statistical features associated with these climatic factors and identified nine factors most correlated with GMC or GY. Principal component analysis of climate data yielded nine principal components responsible for 97% of the variability in the data. Incorporating these nine factors or principal components into the GBLUP-GE framework with a similarity matrix of environments (GBLUP-GE<sub>9CF</sub> and GBLUP-GE<sub>PCA</sub>) provided similar prediction accuracies but could reduce the computational burden. In addition, increasing the number of test set environments in the training set from 8 to 14 increased the prediction accuracy of GBLUP-GE<sub>19CF</sub> trained with monthly average climate data for 2020-2021. Examining prediction accuracy based on concordance, the proportion of overlapping hybrids between the top 50% of predicted and observed values for GMC and GY, indicated that concordance exceeded 50% for the GBLUP-GE<sub>19CF</sub> model, confirming the reliability of our predictions. This study can provide practical guidance for optimizing GPs for maize breeding programs in multi-environment selection.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13857","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating genotype-by-environment (GE) interaction effects into genomic prediction (GP) models with multi-environment climate data can improve selection accuracy to accelerate crop breeding but has received little research attention. Here, we conducted a cross-region GP study of grain moisture content (GMC) and grain yield (GY) in maize hybrids in two major Chinese growing regions using data for 19 climatic factors across 34 environments in 2020 and 2021. Predictions were conducted in 2,126 hybrids generated from 475 maize inbred lines, using 9,355 single nucleotide polymorphism markers for genotyping. Models based on genomic best linear unbiased prediction (GBLUP) incorporating GE interaction effects of 19 climatic factors associated with day length, transpiration, temperature, and radiation (GBLUP-GE19CF) trained on whole data set outperformed the traditional GBLUP or BayesB models in predicting GMC or GY by 10-fold cross-validation, achieving prediction accuracies of 0.731 and 0.331, respectively. To refine the climate data, we examined 84 statistical features associated with these climatic factors and identified nine factors most correlated with GMC or GY. Principal component analysis of climate data yielded nine principal components responsible for 97% of the variability in the data. Incorporating these nine factors or principal components into the GBLUP-GE framework with a similarity matrix of environments (GBLUP-GE9CF and GBLUP-GEPCA) provided similar prediction accuracies but could reduce the computational burden. In addition, increasing the number of test set environments in the training set from 8 to 14 increased the prediction accuracy of GBLUP-GE19CF trained with monthly average climate data for 2020-2021. Examining prediction accuracy based on concordance, the proportion of overlapping hybrids between the top 50% of predicted and observed values for GMC and GY, indicated that concordance exceeded 50% for the GBLUP-GE19CF model, confirming the reliability of our predictions. This study can provide practical guidance for optimizing GPs for maize breeding programs in multi-environment selection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
New insights into CNL-mediated immunity through recognition of Ralstonia solanacearum RipP1 by NbZAR1. Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data. Florigen-like protein OsFTL1 promotes flowering without essential florigens Hd3a and RFT1 in rice. Creation of fragrant peanut using CRISPR/Cas9. Multiple roles of NAC transcription factors in plant development and stress responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1