Florigen-like protein OsFTL1 promotes flowering without essential florigens Hd3a and RFT1 in rice.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2025-02-17 DOI:10.1111/jipb.13856
Shaobo Wei, Long Cheng, Hongge Qian, Xia Li, Lianguang Shang, Yujie Zhou, Xiangyuan Ye, Yupeng Zhou, Yuan Gao, Lin Cheng, Chen Xie, Qingwen Yang, Qian Qian, Wenbin Zhou
{"title":"Florigen-like protein OsFTL1 promotes flowering without essential florigens Hd3a and RFT1 in rice.","authors":"Shaobo Wei, Long Cheng, Hongge Qian, Xia Li, Lianguang Shang, Yujie Zhou, Xiangyuan Ye, Yupeng Zhou, Yuan Gao, Lin Cheng, Chen Xie, Qingwen Yang, Qian Qian, Wenbin Zhou","doi":"10.1111/jipb.13856","DOIUrl":null,"url":null,"abstract":"<p><p>Flowering time is a critical agronomic trait in rice, directly influencing grain yield and adaptability to specific planting regions and seasons. Florigens, including FLOWERING LOCUS T (FT) proteins Hd3a (OsFTL2) and RFT1 (OsFTL3), play central roles in transmitting flowering signals through rice's photoperiod regulatory network. While Hd3a and RFT1 have been extensively studied, the functions and interactions of other FT-like proteins remain unclear, limiting advancements in breeding strategies for early-maturing rice varieties. Here, we demonstrate that the florigen-like protein OsFTL1 forms a florigen activation complex (FAC) and promotes flowering under both short-day and long-day conditions. OsFTL1 localizes to the nucleus and cytoplasm, with predominant expression in the shoot base, facilitating its mobilization to the shoot apical meristem (SAM) to initiate flowering. Overexpression of OsFTL1 (OsFTL1-OE) in leaves or shoot bases significantly accelerates flowering and alters plant architecture. In the nucleus, OsFTL1 interacts with GF14c and OsFD1 to form an FAC, activating OsMADS14 and OsMADS15 expression to drive flowering. Markedly, OsFTL1-OE plants deficient in Hd3a and RFT1 exhibited earlier flowering compared with wild-type plants, indicating that OsFTL1 can independently promote flowering. Furthermore, haplotype analysis identified OsFTL1-Hap3, a beneficial variant associated with early flowering and comparable grain yields. These findings revealed that OsFTL1 can substitute for Hd3a and RFT1 in FAC formation, promoting flowering across photoperiods, and highlighting its potential application in breeding early-maturing, high-yield rice varieties suitable for diverse environments.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13856","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flowering time is a critical agronomic trait in rice, directly influencing grain yield and adaptability to specific planting regions and seasons. Florigens, including FLOWERING LOCUS T (FT) proteins Hd3a (OsFTL2) and RFT1 (OsFTL3), play central roles in transmitting flowering signals through rice's photoperiod regulatory network. While Hd3a and RFT1 have been extensively studied, the functions and interactions of other FT-like proteins remain unclear, limiting advancements in breeding strategies for early-maturing rice varieties. Here, we demonstrate that the florigen-like protein OsFTL1 forms a florigen activation complex (FAC) and promotes flowering under both short-day and long-day conditions. OsFTL1 localizes to the nucleus and cytoplasm, with predominant expression in the shoot base, facilitating its mobilization to the shoot apical meristem (SAM) to initiate flowering. Overexpression of OsFTL1 (OsFTL1-OE) in leaves or shoot bases significantly accelerates flowering and alters plant architecture. In the nucleus, OsFTL1 interacts with GF14c and OsFD1 to form an FAC, activating OsMADS14 and OsMADS15 expression to drive flowering. Markedly, OsFTL1-OE plants deficient in Hd3a and RFT1 exhibited earlier flowering compared with wild-type plants, indicating that OsFTL1 can independently promote flowering. Furthermore, haplotype analysis identified OsFTL1-Hap3, a beneficial variant associated with early flowering and comparable grain yields. These findings revealed that OsFTL1 can substitute for Hd3a and RFT1 in FAC formation, promoting flowering across photoperiods, and highlighting its potential application in breeding early-maturing, high-yield rice varieties suitable for diverse environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
New insights into CNL-mediated immunity through recognition of Ralstonia solanacearum RipP1 by NbZAR1. Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data. Florigen-like protein OsFTL1 promotes flowering without essential florigens Hd3a and RFT1 in rice. Creation of fragrant peanut using CRISPR/Cas9. Multiple roles of NAC transcription factors in plant development and stress responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1