Liuchong Zhu, Dan Huang, Jinli Tan, Jiaxuan Huang, Ruyu Zhang, Jingyang Liao, Jie Wang, Xiaobao Jin
{"title":"Comparative metabolomics reveals streptophenazines with anti-methicillin-resistant Staphylococcus aureus activity derived from Streptomyces albovinaceus strain WA10-1-8 isolated from Periplaneta americana.","authors":"Liuchong Zhu, Dan Huang, Jinli Tan, Jiaxuan Huang, Ruyu Zhang, Jingyang Liao, Jie Wang, Xiaobao Jin","doi":"10.1186/s12866-025-03789-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Streptophenazines, a class of phenazine compounds with a variety of alkyl side chains and activity against methicillin-resistant Staphylococcus aureus (MRSA), are mainly derived from soil or marine microbial secondary metabolites. However, the discovered phenazine compounds still do not meet the needs of the development of anti-MRSA lead compounds. Here, we examined secondary metabolites of Streptomyces albovinaceus WA10-1-8 isolated from Periplaneta americana, for streptophenazines with anti-MRSA activity.</p><p><strong>Results: </strong>In this study, a guidance method combining high-performance liquid chromatography-ultraviolet (HPLC-UV) with molecular networking analysis was used to isolate and identify a series of streptophenazines (A-T) from S. albovinaceus WA10-1-8. Among them, a new streptophenazine containing a dihydroxyalkyl chain structure named streptophenazine T was isolated and identified for the first time. The results of bioactivity assays showed that streptophenazine T had anti-MRSA activity with a minimum inhibitory concentration (MIC) of 150.23 µM, while the MICs of streptophenazine A, B, G, and F were 37.74-146.12 µM.</p><p><strong>Conclusions: </strong>This study was the first to report multiple streptophenazine compounds with anti-MRSA activity expressed by Streptomyces isolated from insect niches. These results provided a valuable reference for future exploration of new streptophenazine compounds with activity against drug-resistant bacteria.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"77"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03789-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Streptophenazines, a class of phenazine compounds with a variety of alkyl side chains and activity against methicillin-resistant Staphylococcus aureus (MRSA), are mainly derived from soil or marine microbial secondary metabolites. However, the discovered phenazine compounds still do not meet the needs of the development of anti-MRSA lead compounds. Here, we examined secondary metabolites of Streptomyces albovinaceus WA10-1-8 isolated from Periplaneta americana, for streptophenazines with anti-MRSA activity.
Results: In this study, a guidance method combining high-performance liquid chromatography-ultraviolet (HPLC-UV) with molecular networking analysis was used to isolate and identify a series of streptophenazines (A-T) from S. albovinaceus WA10-1-8. Among them, a new streptophenazine containing a dihydroxyalkyl chain structure named streptophenazine T was isolated and identified for the first time. The results of bioactivity assays showed that streptophenazine T had anti-MRSA activity with a minimum inhibitory concentration (MIC) of 150.23 µM, while the MICs of streptophenazine A, B, G, and F were 37.74-146.12 µM.
Conclusions: This study was the first to report multiple streptophenazine compounds with anti-MRSA activity expressed by Streptomyces isolated from insect niches. These results provided a valuable reference for future exploration of new streptophenazine compounds with activity against drug-resistant bacteria.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.