Integrated analysis of single-cell and bulk transcriptomics reveals cellular subtypes and molecular features associated with osteosarcoma prognosis.

IF 3.4 2区 医学 Q2 ONCOLOGY BMC Cancer Pub Date : 2025-02-17 DOI:10.1186/s12885-025-13714-y
Feng Liu, Tingting Zhang, Yongqiang Yang, Kailun Wang, Jinlan Wei, Ji-Hua Shi, Dong Zhang, Xia Sheng, Yi Zhang, Jing Zhou, Faming Zhao
{"title":"Integrated analysis of single-cell and bulk transcriptomics reveals cellular subtypes and molecular features associated with osteosarcoma prognosis.","authors":"Feng Liu, Tingting Zhang, Yongqiang Yang, Kailun Wang, Jinlan Wei, Ji-Hua Shi, Dong Zhang, Xia Sheng, Yi Zhang, Jing Zhou, Faming Zhao","doi":"10.1186/s12885-025-13714-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteosarcoma (OS) is the most common primary bone malignancy with variable molecular biology and prognosis. However, our understanding of the association between cell types and OS progression remains poor.</p><p><strong>Methods: </strong>We generated a human OS cell atlas by integrating over 110,000 single cells from 17 samples. Multiple machine learning algorithms were applied to develop tumor purity prediction models based on transcriptomic profile of OS. The Scissor algorithm and gene enrichment analyses were conducted to delve into cell-intrinsic molecular characteristics linked to OS prognosis. Moreover, the study investigated the impact of ATF6α in OS aggressiveness through genetic and pharmacological loss of function analyses. Lastly, the CellChat algorithm was employed to investigate cell-cell communications.</p><p><strong>Results: </strong>Utilizing the high-quality human OS cell atlas, we identified tumor purity as a prognostic indicator and developed a robust tumor purity prediction model. We respectively delineated cancer cell- and immune cell-intrinsic molecular characteristics associated with OS prognosis at single-cell resolution. Interestingly, tumor cells with activated unfolded protein response (UPR) pathway were significantly associated with disease aggressiveness. Notably, ATF6α emerged as the top-activated transcription factor for this tumor subcluster. Subsequently, we confirmed that ATF6α was markedly associated with OS progression, while both genetic and pharmacological inhibition of ATF6α impaired the survival of HOS cells. Lastly, we depicted the landscape of signal crosstalk between the UPR-related subcluster and other cell types within the tumor microenvironment.</p><p><strong>Conclusion: </strong>In summary, our work provides novel insights into the molecular biology of OS, and offers valuable resource for OS biomarker discovery and treatment strategy development.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"280"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13714-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteosarcoma (OS) is the most common primary bone malignancy with variable molecular biology and prognosis. However, our understanding of the association between cell types and OS progression remains poor.

Methods: We generated a human OS cell atlas by integrating over 110,000 single cells from 17 samples. Multiple machine learning algorithms were applied to develop tumor purity prediction models based on transcriptomic profile of OS. The Scissor algorithm and gene enrichment analyses were conducted to delve into cell-intrinsic molecular characteristics linked to OS prognosis. Moreover, the study investigated the impact of ATF6α in OS aggressiveness through genetic and pharmacological loss of function analyses. Lastly, the CellChat algorithm was employed to investigate cell-cell communications.

Results: Utilizing the high-quality human OS cell atlas, we identified tumor purity as a prognostic indicator and developed a robust tumor purity prediction model. We respectively delineated cancer cell- and immune cell-intrinsic molecular characteristics associated with OS prognosis at single-cell resolution. Interestingly, tumor cells with activated unfolded protein response (UPR) pathway were significantly associated with disease aggressiveness. Notably, ATF6α emerged as the top-activated transcription factor for this tumor subcluster. Subsequently, we confirmed that ATF6α was markedly associated with OS progression, while both genetic and pharmacological inhibition of ATF6α impaired the survival of HOS cells. Lastly, we depicted the landscape of signal crosstalk between the UPR-related subcluster and other cell types within the tumor microenvironment.

Conclusion: In summary, our work provides novel insights into the molecular biology of OS, and offers valuable resource for OS biomarker discovery and treatment strategy development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
期刊最新文献
Accuracy of artificial intelligence in detecting tumor bone metastases: a systematic review and meta-analysis. Financial toxicity questionnaire (FIT): development and validation of the italian version (FITALY) in head and neck cancer patients undergoing multimodal curative treatment. Comparison of overall survival of adult and pediatric osteosarcoma patients using the national cancer database. Correction: Site-specific immunoglobulin G N-glycosylation is associated with gastric cancer progression. CT texture features of lung adenocarcinoma with HER2 mutation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1