Enhanced intestinal permeation of novel sulpiride electrospun nanofibers: formulation, optimization, and ex vivo evaluation of drug absorption.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL Drug Development and Industrial Pharmacy Pub Date : 2025-02-23 DOI:10.1080/03639045.2025.2469140
Safaa Khaled, Omar Mady, Asmaa Hedaya, Noorelhoda Abdine, Yusuf Haggag
{"title":"Enhanced intestinal permeation of novel sulpiride electrospun nanofibers: formulation, optimization, and <i>ex vivo</i> evaluation of drug absorption.","authors":"Safaa Khaled, Omar Mady, Asmaa Hedaya, Noorelhoda Abdine, Yusuf Haggag","doi":"10.1080/03639045.2025.2469140","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Electrospinning presents a promising avenue for drug delivery applications by integrating traditional solid dispersion methods with nano-medicinal strategies. Electrospun nanofibers (NFs) can be tailored to control the composition, diameter, and orientation of the NFs based on the intended application.</p><p><strong>Objectives: </strong>Herein, we aim to fabricate novel polymeric NFs loaded with sulpiride (SUL) utilizing Eudragit L100-55 (EL100-55) polymers to improve the dissolution and permeability of a model class IV drug.</p><p><strong>Methods: </strong>Various factors were assessed to optimize the electrospun NF formulation, including polymer concentrations, flow rate, and drug amount.</p><p><strong>Results: </strong>The electrospinning process yielded defect-free SUL-loaded EL100-55 NFs. The physicochemical analysis demonstrated favorable attributes in all formulations, encompassing high drug loading, encapsulation efficiency, and rapid drug release. Nanofiber formulations exhibited superior dissolution due to their extensive surface area. Modified non-everted sac experiments revealed a twofold increase in SUL permeation through the intestinal membrane upon EL100-55 encapsulation, emphasizing its impact on tight junction modulation in both NF and solid dispersion formulations. Enhanced drug permeation in the NF formulation involved dual mechanisms: transcellular diffusion and widening of the paracellular pathway. In contrast, the solid dispersion formulation prepared via solvent evaporation predominantly widened the paracellular pathway. Visualization techniques illustrated the NFs' robust affinity for the transcellular pathway.</p><p><strong>Conclusion: </strong>Sulpiride encapsulation into EL100-55-NF is a promising solution for BCS class IV drugs facing solubility and permeability challenges.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-14"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2469140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Electrospinning presents a promising avenue for drug delivery applications by integrating traditional solid dispersion methods with nano-medicinal strategies. Electrospun nanofibers (NFs) can be tailored to control the composition, diameter, and orientation of the NFs based on the intended application.

Objectives: Herein, we aim to fabricate novel polymeric NFs loaded with sulpiride (SUL) utilizing Eudragit L100-55 (EL100-55) polymers to improve the dissolution and permeability of a model class IV drug.

Methods: Various factors were assessed to optimize the electrospun NF formulation, including polymer concentrations, flow rate, and drug amount.

Results: The electrospinning process yielded defect-free SUL-loaded EL100-55 NFs. The physicochemical analysis demonstrated favorable attributes in all formulations, encompassing high drug loading, encapsulation efficiency, and rapid drug release. Nanofiber formulations exhibited superior dissolution due to their extensive surface area. Modified non-everted sac experiments revealed a twofold increase in SUL permeation through the intestinal membrane upon EL100-55 encapsulation, emphasizing its impact on tight junction modulation in both NF and solid dispersion formulations. Enhanced drug permeation in the NF formulation involved dual mechanisms: transcellular diffusion and widening of the paracellular pathway. In contrast, the solid dispersion formulation prepared via solvent evaporation predominantly widened the paracellular pathway. Visualization techniques illustrated the NFs' robust affinity for the transcellular pathway.

Conclusion: Sulpiride encapsulation into EL100-55-NF is a promising solution for BCS class IV drugs facing solubility and permeability challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
期刊最新文献
Nanoparticle-Based Delivery Systems for Phytochemicals in Cancer Therapy: Molecular Mechanisms, Clinical Evidence, and Emerging Trends. Gliclazide loaded spanlastic nanovesicles: empowering bioavailability and antidiabetic efficacy. Formation of self-assembled polyelectrolyte complex derived from BSA and nanogels: a study to optimize processing parameters and preserve protein integrity. Glimepiride/hydroxypropyl-β-cyclodextrin inclusion compound: preparation, characterization, and evaluation. Optimization of the manufacturing process of a pediatric omeprazole enteric pellets suspension: Full Factorial Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1