Peppermint Essential Oil For Controlling Aspergillus flavus and Analysis of its Antifungal Action Mode.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Current Microbiology Pub Date : 2025-02-18 DOI:10.1007/s00284-025-04116-1
Yanjie Yi, Rumeng Liu, Zijun Shang, Kai Wang, Changfu Zhang, Zihao Wang, Yu Lou, Jiaoyang Liu, Peng Li
{"title":"Peppermint Essential Oil For Controlling Aspergillus flavus and Analysis of its Antifungal Action Mode.","authors":"Yanjie Yi, Rumeng Liu, Zijun Shang, Kai Wang, Changfu Zhang, Zihao Wang, Yu Lou, Jiaoyang Liu, Peng Li","doi":"10.1007/s00284-025-04116-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aspergillus flavus contamination has long been a major problem in the food and agriculture industries, while peppermint essential oil (PEO) is increasingly recognized as an effective alternative for controlling fungal spoilage. However, its biocontrol effect and action mode on A. flavus have rarely been reported. Here, the inhibition rates of PEO on A. flavus were determined by the plate fumigation and mycelial dry weight method. The minimum inhibitory concentration (MIC) was identified as 0.343 μL/mL. In the biocontrol tests, the moldy rates of maize kernels, wheat grains, and peanut kernels in the PEO treatment group were significantly reduced by 65%, 72%, and 63.33%, respectively. The biocontrol efficacy of PEO on maize kernels, wheat grains, and peanut kernels reached 80.67%, 82%, and 67.67%, respectively. Furthermore, antifungal action mode analysis showed that PEO changed the mycelial morphology, damaged the integrity of cell wall and membrane. Moreover, it reduced the ergosterol content, elevated the malondialdehyde content, increased the relative conductivity, and led to the intracellular leakage of nucleic acids and proteins, thereby enhancing the cell membrane permeability. In addition, PEO decreased the antioxidant-related catalase (CAT) and superoxide dismutase (SOD) activities, significantly increased the hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) content, and induced the accumulation of reactive oxygen species (ROS) in the mycelia. In conclusion, this study confirms that PEO, as an effective natural antimicrobial agent, has good application prospects in controlling the spoilage of A. flavus during grain storage and preventing food mold.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 4","pages":"140"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04116-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aspergillus flavus contamination has long been a major problem in the food and agriculture industries, while peppermint essential oil (PEO) is increasingly recognized as an effective alternative for controlling fungal spoilage. However, its biocontrol effect and action mode on A. flavus have rarely been reported. Here, the inhibition rates of PEO on A. flavus were determined by the plate fumigation and mycelial dry weight method. The minimum inhibitory concentration (MIC) was identified as 0.343 μL/mL. In the biocontrol tests, the moldy rates of maize kernels, wheat grains, and peanut kernels in the PEO treatment group were significantly reduced by 65%, 72%, and 63.33%, respectively. The biocontrol efficacy of PEO on maize kernels, wheat grains, and peanut kernels reached 80.67%, 82%, and 67.67%, respectively. Furthermore, antifungal action mode analysis showed that PEO changed the mycelial morphology, damaged the integrity of cell wall and membrane. Moreover, it reduced the ergosterol content, elevated the malondialdehyde content, increased the relative conductivity, and led to the intracellular leakage of nucleic acids and proteins, thereby enhancing the cell membrane permeability. In addition, PEO decreased the antioxidant-related catalase (CAT) and superoxide dismutase (SOD) activities, significantly increased the hydrogen peroxide (H2O2) content, and induced the accumulation of reactive oxygen species (ROS) in the mycelia. In conclusion, this study confirms that PEO, as an effective natural antimicrobial agent, has good application prospects in controlling the spoilage of A. flavus during grain storage and preventing food mold.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
期刊最新文献
Elucidating the Microsatellite Signature of the Tri-Partite Genomes of the Viral Family Peribunyaviridae. Genetic Diversity in Antimicrobial Resistance Determinants Among Pathogenic Pseudomonas aeruginosa in India. Statistical Optimization of Exopolysaccharide and Biomass Production by Mangrove Fungi Fusarium equiseti ANP2 and its Potential Application as Bioemulsifier and Chelator. Synergistic Antimicrobial Effects of Melaleuca alternifolia Essential Oil and Kojic Acid Combinations. Description of Cytobacillus Mangrovibacter sp. nov., and Cytobacillus Spartinae sp. nov., Isolated from Mangrove Sediment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1