Fluorescent Carbon Dots from Disposable Masks: Pathogen Sensing and UV-Blocking Film Integration.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2025-02-18 DOI:10.1007/s10895-025-04177-2
Manisha Kumari, Ganga Ram Chaudhary, Savita Chaudhary, Ahmad Umar, Sotirios Baskoutas
{"title":"Fluorescent Carbon Dots from Disposable Masks: Pathogen Sensing and UV-Blocking Film Integration.","authors":"Manisha Kumari, Ganga Ram Chaudhary, Savita Chaudhary, Ahmad Umar, Sotirios Baskoutas","doi":"10.1007/s10895-025-04177-2","DOIUrl":null,"url":null,"abstract":"<p><p>The development of rapid and reliable techniques for detecting pathogenic bacterial strains is of utmost importance in ensuring food security and safeguarding public health. This study presents a novel approach to fabricating highly fluorescent Carbon dots (CDs) through a facile one-step thermal calcination method, utilizing disposable face masks as the exclusive carbon source. The developed CDs demonstrated excellent fluorescence stability, excitation-dependent emission and particle sizes ranging from 4 - 10 nm. The developed CDs demonstrated efficient fluorescence quenching upon interaction with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), attributed to the robust bonding between the bacterial species and the CD surface. This unique property positions the CDs as functional sensors for the detection of specific bacterial strains. The sensor displayed an impressive limit of detection, reaching as low as 8 CFU/ml for E. coli and 9 CFU/ml for S. aureus. Furthermore, the synthesized CDs were integrated into a polyvinyl alcohol (PVA) matrix to fabricate PVA@CDs films. These films inherited the distinctive optical characteristics of fluorescent CDs, resulting in intense cyan fluorescence emission, high visible transparency, and an exceptional approximately 100% ultraviolet (UV) rays-blocking ratio in the UV region. This multifaceted approach not only addresses the urgent need for effective pathogenic bacterial detection but also extends the application of CDs to UV-blocking films with potential implications for various fields, including healthcare and environmental safety.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04177-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of rapid and reliable techniques for detecting pathogenic bacterial strains is of utmost importance in ensuring food security and safeguarding public health. This study presents a novel approach to fabricating highly fluorescent Carbon dots (CDs) through a facile one-step thermal calcination method, utilizing disposable face masks as the exclusive carbon source. The developed CDs demonstrated excellent fluorescence stability, excitation-dependent emission and particle sizes ranging from 4 - 10 nm. The developed CDs demonstrated efficient fluorescence quenching upon interaction with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), attributed to the robust bonding between the bacterial species and the CD surface. This unique property positions the CDs as functional sensors for the detection of specific bacterial strains. The sensor displayed an impressive limit of detection, reaching as low as 8 CFU/ml for E. coli and 9 CFU/ml for S. aureus. Furthermore, the synthesized CDs were integrated into a polyvinyl alcohol (PVA) matrix to fabricate PVA@CDs films. These films inherited the distinctive optical characteristics of fluorescent CDs, resulting in intense cyan fluorescence emission, high visible transparency, and an exceptional approximately 100% ultraviolet (UV) rays-blocking ratio in the UV region. This multifaceted approach not only addresses the urgent need for effective pathogenic bacterial detection but also extends the application of CDs to UV-blocking films with potential implications for various fields, including healthcare and environmental safety.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
A Meticulous Focus on the Determination of Critical Micelle Concentration Employing Fluorescence Spectroscopy. Heterocyclic Coumarin Hybrids as Chemo Sensors of Neurotoxic Lead Ions in Safe Harmless Solvents and Ambient Temperature. Fluorescent Carbon Dots from Disposable Masks: Pathogen Sensing and UV-Blocking Film Integration. Box-Behnken Design and Molecular Docking Assisted Quenching Spectrofluorimetric Method for the Quantitation of Citalopram HBr in Commercial Dosage Forms. Controlling the Photophysical Properties and Hyperpolarizability Values of Synthesized Indan-1-one Derivatives with Different Position of Bromine Atoms and Molecular Interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1