Integrative analysis of metabolite and transcriptome reveals the biosynthetic pathway and candidate genes for iridoid glycoside biosynthesis in Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong.
Ke Rao, Siyu Liu, Xiaohui Tang, Guofu Jia, Shaohua Yang, Chaoxiang Ren, Jin Pei
{"title":"Integrative analysis of metabolite and transcriptome reveals the biosynthetic pathway and candidate genes for iridoid glycoside biosynthesis in <i>Neopicrorhiza scrophulariiflora</i> (Pennell) D.Y.Hong.","authors":"Ke Rao, Siyu Liu, Xiaohui Tang, Guofu Jia, Shaohua Yang, Chaoxiang Ren, Jin Pei","doi":"10.3389/fpls.2025.1527477","DOIUrl":null,"url":null,"abstract":"<p><p><i>Neopicrorhiza scrophulariiflora</i> (Pennell) D.Y.Hong (<i>N. scrophulariiflora</i>) is an important wild medicinal plant that belongs to the Plantaginaceae family. Its main active ingredients, picroside I (P-I) and picroside II (P-II), possess anti-inflammatory, anticancer, and antibacterial properties. Due to overharvesting, <i>N. scrophulariiflora</i> resources are facing the risk of depletion, urgently requiring resource protection and rational utilization. However, the biosynthetic pathways and related genes of active compounds in <i>N. scrophulariiflora</i> have not been fully investigated. In this study, widely targeted metabolomics and RNA-seq technology were employed to perform a joint analysis of the metabolome and transcriptome in different tissues of <i>N. scrophulariiflora</i>, including the roots, stems, and leaves. A total of 196 flavonoids and 63 terpenoids were identified. Among the 158,254 annotated genes, 74 were annotated as related to iridoid synthesis. Using bioinformatics methods such as clustering analysis, phylogenetic tree construction, and weighted gene co-expression network analysis (WGCNA), 43 candidate genes were identified that may be involved in the biosynthesis of picroside-I and picroside-II, of which 26 genes were significantly correlated with the synthesis of picrosides and their intermediates. Transcriptome analysis revealed the expression patterns of differentially expressed genes, and metabolomic analysis revealed the distribution characteristics of metabolites in different tissues of <i>N. scrophulariiflora</i>. Through qRT-PCR validation, we found that three <i>NsF3H/NsF3D</i> genes, four <i>NsUGD/NsUPD</i> genes, one <i>Ns2HFD</i> gene, and three <i>NsSQM</i> genes may participate in the iridoid biosynthesis pathway. These findings provide important genetic and metabolomic information for an in-depth understanding of the biosynthetic mechanisms of iridoids and lay the foundation for the protection and sustainable utilization of <i>N. scrophulariiflora</i>.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1527477"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1527477","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong (N. scrophulariiflora) is an important wild medicinal plant that belongs to the Plantaginaceae family. Its main active ingredients, picroside I (P-I) and picroside II (P-II), possess anti-inflammatory, anticancer, and antibacterial properties. Due to overharvesting, N. scrophulariiflora resources are facing the risk of depletion, urgently requiring resource protection and rational utilization. However, the biosynthetic pathways and related genes of active compounds in N. scrophulariiflora have not been fully investigated. In this study, widely targeted metabolomics and RNA-seq technology were employed to perform a joint analysis of the metabolome and transcriptome in different tissues of N. scrophulariiflora, including the roots, stems, and leaves. A total of 196 flavonoids and 63 terpenoids were identified. Among the 158,254 annotated genes, 74 were annotated as related to iridoid synthesis. Using bioinformatics methods such as clustering analysis, phylogenetic tree construction, and weighted gene co-expression network analysis (WGCNA), 43 candidate genes were identified that may be involved in the biosynthesis of picroside-I and picroside-II, of which 26 genes were significantly correlated with the synthesis of picrosides and their intermediates. Transcriptome analysis revealed the expression patterns of differentially expressed genes, and metabolomic analysis revealed the distribution characteristics of metabolites in different tissues of N. scrophulariiflora. Through qRT-PCR validation, we found that three NsF3H/NsF3D genes, four NsUGD/NsUPD genes, one Ns2HFD gene, and three NsSQM genes may participate in the iridoid biosynthesis pathway. These findings provide important genetic and metabolomic information for an in-depth understanding of the biosynthetic mechanisms of iridoids and lay the foundation for the protection and sustainable utilization of N. scrophulariiflora.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.