{"title":"Machine vision-based detection of key traits in shiitake mushroom caps.","authors":"Jiuxiao Zhao, Wengang Zheng, Yibo Wei, Qian Zhao, Jing Dong, Xin Zhang, Mingfei Wang","doi":"10.3389/fpls.2025.1495305","DOIUrl":null,"url":null,"abstract":"<p><p>This study puts forward a machine vision-based prediction method to solve the problem regarding the measurement of traits in shiitake mushroom caps during the shiitake mushroom breeding process. It enables precise phenotyping through accurate image acquisition and analysis. In practical applications, this method improves the breeding process by rapidly and non-invasively assessing key traits such as the size and color of shiitake mushroom caps, which helps in efficiently screening strains and reducing human errors. Firstly, an edge detection model was established. This model is called KL-Dexined. It achieved an per-image best threshold (OIS) rate of 93.5%. Also, it reached an Optimal Dynamic Stabilization (ODS) rate of 96.3%. Moreover, its Average Precision (AP) was 97.1%. Secondly, the edge information detected by KL-Dexined was mapped onto the original image of shiitake mushroom caps, and using the OpenCV model,11 phenotypic key features including shiitake mushroom caps area, perimeter, and external rectangular length were obtained. Experimental results demonstrated that the R² between predicted values and true values was 0.97 with an RMSE as low as 0.049. After conducting correlation analysis between phenotypic features and shiitake mushroom caps weight, four most correlated phenotypic features were identified: Area, Perimeter, External rectangular width, and Long axis; they were divided into four groups based on their correlation rankings. Finally,M3 group using GWO_SVM algorithm achieved optimal performance among six mainstream machine learning models tested with an R²value of 0.97 and RMSE only at 0.038 when comparing predicted values with true values. Hence, this study provided guidance for predicting key traits in shiitake mushroom caps.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1495305"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1495305","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study puts forward a machine vision-based prediction method to solve the problem regarding the measurement of traits in shiitake mushroom caps during the shiitake mushroom breeding process. It enables precise phenotyping through accurate image acquisition and analysis. In practical applications, this method improves the breeding process by rapidly and non-invasively assessing key traits such as the size and color of shiitake mushroom caps, which helps in efficiently screening strains and reducing human errors. Firstly, an edge detection model was established. This model is called KL-Dexined. It achieved an per-image best threshold (OIS) rate of 93.5%. Also, it reached an Optimal Dynamic Stabilization (ODS) rate of 96.3%. Moreover, its Average Precision (AP) was 97.1%. Secondly, the edge information detected by KL-Dexined was mapped onto the original image of shiitake mushroom caps, and using the OpenCV model,11 phenotypic key features including shiitake mushroom caps area, perimeter, and external rectangular length were obtained. Experimental results demonstrated that the R² between predicted values and true values was 0.97 with an RMSE as low as 0.049. After conducting correlation analysis between phenotypic features and shiitake mushroom caps weight, four most correlated phenotypic features were identified: Area, Perimeter, External rectangular width, and Long axis; they were divided into four groups based on their correlation rankings. Finally,M3 group using GWO_SVM algorithm achieved optimal performance among six mainstream machine learning models tested with an R²value of 0.97 and RMSE only at 0.038 when comparing predicted values with true values. Hence, this study provided guidance for predicting key traits in shiitake mushroom caps.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.