Bavani Gunasegaran, Shivani Krishnamurthy, Sharron S Chow, Millijoy D Villanueva, Anna Guller, Seong Beom Ahn, Benjamin Heng
{"title":"Comparative Analysis of HMC3 and C20 Microglial Cell Lines Reveals Differential Myeloid Characteristics and Responses to Immune Stimuli.","authors":"Bavani Gunasegaran, Shivani Krishnamurthy, Sharron S Chow, Millijoy D Villanueva, Anna Guller, Seong Beom Ahn, Benjamin Heng","doi":"10.1111/imm.13900","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia are the primary resident immune cells of the central nervous system (CNS) that respond to injury and infections. Being critical to CNS homeostasis, microglia also have been shown to contribute to neurodegenerative diseases and brain cancer. Hence, microglia are regarded as a potential therapeutic target in CNS diseases, resulting in an increased demand for reliable in vitro models. Two human microglia cell lines (HMC3 and C20) are being used in multiple in vitro studies, however, the knowledge of their biological and immunological characteristics remains limited. Our aim was to identify and compare the biological changes in these immortalised immune cells under normal physiological and immunologically challenged conditions. Using high-resolution quantitative mass spectrometry, we have examined in-depth proteomic profiles of non-stimulated and LPS or IFN-γ challenged HMC3 and C20 cells. Our findings reveal that HMC3 cells responded to both treatments through upregulation of immune, metabolic, and antiviral pathways, while C20 cells showed a response associated with mitochondrial and immune activities. Additionally, the secretome analysis demonstrated that both cell lines release IL-6 in response to LPS, while IFN-γ treatment resulted in altered kynurenine pathway activity, highlighting distinct immune and metabolic adaptations.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13900","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia are the primary resident immune cells of the central nervous system (CNS) that respond to injury and infections. Being critical to CNS homeostasis, microglia also have been shown to contribute to neurodegenerative diseases and brain cancer. Hence, microglia are regarded as a potential therapeutic target in CNS diseases, resulting in an increased demand for reliable in vitro models. Two human microglia cell lines (HMC3 and C20) are being used in multiple in vitro studies, however, the knowledge of their biological and immunological characteristics remains limited. Our aim was to identify and compare the biological changes in these immortalised immune cells under normal physiological and immunologically challenged conditions. Using high-resolution quantitative mass spectrometry, we have examined in-depth proteomic profiles of non-stimulated and LPS or IFN-γ challenged HMC3 and C20 cells. Our findings reveal that HMC3 cells responded to both treatments through upregulation of immune, metabolic, and antiviral pathways, while C20 cells showed a response associated with mitochondrial and immune activities. Additionally, the secretome analysis demonstrated that both cell lines release IL-6 in response to LPS, while IFN-γ treatment resulted in altered kynurenine pathway activity, highlighting distinct immune and metabolic adaptations.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.