Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2025-02-17 DOI:10.1186/s13041-025-01179-w
Jianfei Sun, Liping Lu, Yingtao Lian, Song Xu, Ying Zhu, Yanping Wu, Qianhui Lin, Jing Hou, Yinping Li, Zhui Yu
{"title":"Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice.","authors":"Jianfei Sun, Liping Lu, Yingtao Lian, Song Xu, Ying Zhu, Yanping Wu, Qianhui Lin, Jing Hou, Yinping Li, Zhui Yu","doi":"10.1186/s13041-025-01179-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac arrest (CA) is one of the most common illnesses worldwide. Post-CA brain injury (PCABI) is a major cause of death and poor recovery in CA patients and the current CA treatments are not very effective. The microbiome-gut-brain axis has been found to significantly affect brain ischemia injury. Furthermore, in ischemic stroke patients, short-chain fatty acids (SCFA), especially sodium butyrate (SB), have been observed to promote neuroprotective effects by modulating inflammatory response and microglial polarization in the cortex. However, the precise mechanism of SB on CA-induced injury remains elusive. Therefore, this research study established an oxygen-glucose deprivation and reoxygenation (OGD/R) model using BV-2 microglial and HT22 cells to simulate cerebral ischemia/reperfusion injury in vitro and a potassium chloride-induced CA mouse model to mimic CA in vivo. The data revealed that SB markedly improved neurological scores and reduced neuronal death and apoptosis. Moreover, it reduced M1 microglia and neuroinflammation in CA mice. In addition, SB increased intestinal integrity and alleviated systemic inflammation. The 16S rDNA sequencing analysis indicated that SB intervention mitigated CA-induced gut microbiota dysbiosis and SCFA depletion. It was also observed that CA mice's brain and OGD/R-exposed BV2 cells had substantially increased levels of MyD88, phosphorylated NF-κB p65, and TLR4 proteins, which were reduced after SB treatment. In summary, this study revealed that SB can protect against cerebral ischemia-reperfusion injury by controlling microglia polarization and microbiome-gut-brain axis to inhibit brain inflammation via the TLR4/MyD88/NF-κB pathway.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"13"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01179-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac arrest (CA) is one of the most common illnesses worldwide. Post-CA brain injury (PCABI) is a major cause of death and poor recovery in CA patients and the current CA treatments are not very effective. The microbiome-gut-brain axis has been found to significantly affect brain ischemia injury. Furthermore, in ischemic stroke patients, short-chain fatty acids (SCFA), especially sodium butyrate (SB), have been observed to promote neuroprotective effects by modulating inflammatory response and microglial polarization in the cortex. However, the precise mechanism of SB on CA-induced injury remains elusive. Therefore, this research study established an oxygen-glucose deprivation and reoxygenation (OGD/R) model using BV-2 microglial and HT22 cells to simulate cerebral ischemia/reperfusion injury in vitro and a potassium chloride-induced CA mouse model to mimic CA in vivo. The data revealed that SB markedly improved neurological scores and reduced neuronal death and apoptosis. Moreover, it reduced M1 microglia and neuroinflammation in CA mice. In addition, SB increased intestinal integrity and alleviated systemic inflammation. The 16S rDNA sequencing analysis indicated that SB intervention mitigated CA-induced gut microbiota dysbiosis and SCFA depletion. It was also observed that CA mice's brain and OGD/R-exposed BV2 cells had substantially increased levels of MyD88, phosphorylated NF-κB p65, and TLR4 proteins, which were reduced after SB treatment. In summary, this study revealed that SB can protect against cerebral ischemia-reperfusion injury by controlling microglia polarization and microbiome-gut-brain axis to inhibit brain inflammation via the TLR4/MyD88/NF-κB pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice. Key mechanisms of angiogenesis in the infarct core: association of macrophage infiltration with venogenesis. Development of selective deconjugases for membrane-anchored LC3A/B in post-mitotic neurons. Changes in the pH value of the human brain in Alzheimer's disease pathology correlated with CD68-positive microglia: a community-based autopsy study in Beijing, China. Transcriptome atlases of rat brain regions and their adaptation to diabetes resolution following gastrectomy in the Goto-Kakizaki rat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1