{"title":"Palaeobiology and osteohistology of South African sauropodomorph dinosaurs.","authors":"Fay-Yaad Toefy, Emil Krupandan, Anusuya Chinsamy","doi":"10.1111/joa.14229","DOIUrl":null,"url":null,"abstract":"<p><p>Several sauropodomorph dinosaurs have been excavated from the Elliot Formation (EF) of Southern Africa which include important taxa such as Massospondylus, Melanorosaurus and Antetonitrus. The study of the bone microstructure of smaller, bipedal Sauropodomorpha and larger, quadrupedal Sauropoda allow us to infer how the growth dynamics changed during the evolution of gigantism. Historically, osteohistological studies of Sauropodomorpha tended to have focused on either early diverging taxa (e.g. Plateosaurus & Massospondylus) or on derived taxa (diplodocids & titanosaurs), whereas studies on the growth dynamics of the transitionary groups (i.e. Sauropodiformes & early Sauropoda) are poorly known. Here, we assess the palaeobiology of two sauropodiformes and an early sauropod by analysing their bone histology. Thin sections of the long bones of two indeterminate sauropodiformes NMQR 3314 and NMQR 1551, and an indeterminate sauropod SAM-PK-K382 were prepared. The general histology of the long bones of all three dinosaurs were similar. Rapid growth through the deposition of fibrolamellar bone tissue characterised their respective ontogenies. Lines of arrested growth (LAGs) were commonly located in the mid and outer cortex signalling the onset of uninterrupted growth. Differences in the histology of these dinosaurs were principally related to the pathological bone tissue evident in the femur of the sauropodiform NMQR 1551 and to the formation of annuli around LAGs in Sauropoda indet., as well as in the location of LAGs in the compacta. The number of LAGs in the cortex varied among the taxa but generally the outer regions of the cortex showed an accumulation of LAGs. The growth dynamics of our three sauropodomorph dinosaurs are similar to early sauropods such as Antetonitrus. It appears that the abundance of fibrolamellar bone tissue and uninterrupted growth at later ontogenetic stages are likely key traits in the early evolution of gigantism in Sauropoda, which supports the occurrence of a mosaic of growth dynamic patterns among transitionary Sauropodomorpha.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14229","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several sauropodomorph dinosaurs have been excavated from the Elliot Formation (EF) of Southern Africa which include important taxa such as Massospondylus, Melanorosaurus and Antetonitrus. The study of the bone microstructure of smaller, bipedal Sauropodomorpha and larger, quadrupedal Sauropoda allow us to infer how the growth dynamics changed during the evolution of gigantism. Historically, osteohistological studies of Sauropodomorpha tended to have focused on either early diverging taxa (e.g. Plateosaurus & Massospondylus) or on derived taxa (diplodocids & titanosaurs), whereas studies on the growth dynamics of the transitionary groups (i.e. Sauropodiformes & early Sauropoda) are poorly known. Here, we assess the palaeobiology of two sauropodiformes and an early sauropod by analysing their bone histology. Thin sections of the long bones of two indeterminate sauropodiformes NMQR 3314 and NMQR 1551, and an indeterminate sauropod SAM-PK-K382 were prepared. The general histology of the long bones of all three dinosaurs were similar. Rapid growth through the deposition of fibrolamellar bone tissue characterised their respective ontogenies. Lines of arrested growth (LAGs) were commonly located in the mid and outer cortex signalling the onset of uninterrupted growth. Differences in the histology of these dinosaurs were principally related to the pathological bone tissue evident in the femur of the sauropodiform NMQR 1551 and to the formation of annuli around LAGs in Sauropoda indet., as well as in the location of LAGs in the compacta. The number of LAGs in the cortex varied among the taxa but generally the outer regions of the cortex showed an accumulation of LAGs. The growth dynamics of our three sauropodomorph dinosaurs are similar to early sauropods such as Antetonitrus. It appears that the abundance of fibrolamellar bone tissue and uninterrupted growth at later ontogenetic stages are likely key traits in the early evolution of gigantism in Sauropoda, which supports the occurrence of a mosaic of growth dynamic patterns among transitionary Sauropodomorpha.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.