Germline Variants in Pediatric Cancer : Based on Oncogenic Pathways.

IF 1.4 4区 医学 Q4 CLINICAL NEUROLOGY Journal of Korean Neurosurgical Society Pub Date : 2025-02-17 DOI:10.3340/jkns.2025.0011
Joo Whan Kim
{"title":"Germline Variants in Pediatric Cancer : Based on Oncogenic Pathways.","authors":"Joo Whan Kim","doi":"10.3340/jkns.2025.0011","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic germline variants (PGVs) are increasingly recognized as critical elements in pediatric cancer predisposition. Determining the pathogenicity of germline variants is a dynamic process, with advancements in next-generation sequencing (NGS) and expanding genome databases reshaping our understanding of cancer genomics. This article reviews the role of PGVs in key oncogenic pathways, including RTK/RAS/MAPK, PI3K/AKT, WNT, and Hedgehog signaling, highlighting their associations with specific cancer predisposition syndromes and neurosurgical implications. Most PGVs are inherited in an autosomal dominant pattern and are frequent in tumor suppressor genes, while autosomal recessive conditions like Ataxia-telangiectasia and Fanconi anemia are less common. Germline variants in proto-oncogenes such as PTPN11, KRAS, and HRAS are associated with RASopathies, including Noonan and Costello syndromes, which show variable cancer risks. Similarly, PTEN PGVs, linked to Cowden syndrome, and DICER1 PGVs, responsible for DICER1 syndrome, exemplify the diverse clinical presentations and risks of pediatric cancer predisposition syndromes. Medulloblastoma, a pediatric-specific brain tumor, shows an increasing proportion of PGVs, with approximately 12% of all medulloblastomas harboring PGVs in APC, PTCH1, SUFU, and ELP1 in the WNT-activated and SHH-activated subtypes. Emerging evidence suggests that approximately 8.5-20% of pediatric cancer patients harbor PGVs, with a substantial proportion arising de novo. Routine germline screening for pediatric cancer patients is increasingly recommended, as many PGVs lack family history. Programs like STREAM (Solid Tumor REsearch And Magic) in Korea underscore the importance of comprehensive pediatric genome databases for personalized precision medicine. As neurosurgeons are frequently the first to encounter central nervous system tumor manifestations, a robust understanding of genomic medicine is essential. This review emphasizes the need for international collaboration to develop actionable insights into pediatric cancer genomics, ultimately improving diagnostic, therapeutic, and preventive strategies.</p>","PeriodicalId":16283,"journal":{"name":"Journal of Korean Neurosurgical Society","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Neurosurgical Society","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3340/jkns.2025.0011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic germline variants (PGVs) are increasingly recognized as critical elements in pediatric cancer predisposition. Determining the pathogenicity of germline variants is a dynamic process, with advancements in next-generation sequencing (NGS) and expanding genome databases reshaping our understanding of cancer genomics. This article reviews the role of PGVs in key oncogenic pathways, including RTK/RAS/MAPK, PI3K/AKT, WNT, and Hedgehog signaling, highlighting their associations with specific cancer predisposition syndromes and neurosurgical implications. Most PGVs are inherited in an autosomal dominant pattern and are frequent in tumor suppressor genes, while autosomal recessive conditions like Ataxia-telangiectasia and Fanconi anemia are less common. Germline variants in proto-oncogenes such as PTPN11, KRAS, and HRAS are associated with RASopathies, including Noonan and Costello syndromes, which show variable cancer risks. Similarly, PTEN PGVs, linked to Cowden syndrome, and DICER1 PGVs, responsible for DICER1 syndrome, exemplify the diverse clinical presentations and risks of pediatric cancer predisposition syndromes. Medulloblastoma, a pediatric-specific brain tumor, shows an increasing proportion of PGVs, with approximately 12% of all medulloblastomas harboring PGVs in APC, PTCH1, SUFU, and ELP1 in the WNT-activated and SHH-activated subtypes. Emerging evidence suggests that approximately 8.5-20% of pediatric cancer patients harbor PGVs, with a substantial proportion arising de novo. Routine germline screening for pediatric cancer patients is increasingly recommended, as many PGVs lack family history. Programs like STREAM (Solid Tumor REsearch And Magic) in Korea underscore the importance of comprehensive pediatric genome databases for personalized precision medicine. As neurosurgeons are frequently the first to encounter central nervous system tumor manifestations, a robust understanding of genomic medicine is essential. This review emphasizes the need for international collaboration to develop actionable insights into pediatric cancer genomics, ultimately improving diagnostic, therapeutic, and preventive strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
109
审稿时长
3-8 weeks
期刊介绍: The Journal of Korean Neurosurgical Society (J Korean Neurosurg Soc) is the official journal of the Korean Neurosurgical Society, and published bimonthly (1st day of January, March, May, July, September, and November). It launched in October 31, 1972 with Volume 1 and Number 1. J Korean Neurosurg Soc aims to allow neurosurgeons from around the world to enrich their knowledge of patient management, education, and clinical or experimental research, and hence their professionalism. This journal publishes Laboratory Investigations, Clinical Articles, Review Articles, Case Reports, Technical Notes, and Letters to the Editor. Our field of interest involves clinical neurosurgery (cerebrovascular disease, neuro-oncology, skull base neurosurgery, spine, pediatric neurosurgery, functional neurosurgery, epilepsy, neuro-trauma, and peripheral nerve disease) and laboratory work in neuroscience.
期刊最新文献
Germline Variants in Pediatric Cancer : Based on Oncogenic Pathways. Minimizing Hemorrhage Complications in Deep Brain Stimulation Surgery - The Impact of Imaging Modalities and Trajectory Planning. Neurochemical Characterization of A53T-alpha-synuclein and 6-OHDA Rat Models for Parkinson's Disease through Animal PET Imaging Analysis. New Perspectives into the Combined Pterional and Interhemispheric Approach during Ruptured Anterior Communicating Artery Aneurysm Surgery in the Endovascular Treatment Era. Assessment of Clinical and Radiologic Outcomes of Biportal Endoscopic Posterior Cervical Inclinatory Foraminotomy : A Retrospective Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1