Physiological responses of the monocled cobra (Naja kaouthia Lesson, 1831) including venom production, to high ambient temperature exposure.

IF 1.8 3区 医学 Q4 TOXICOLOGY Journal of Venomous Animals and Toxins Including Tropical Diseases Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.1590/1678-9199-JVATITD-2024-0058
Taksa Vasaruchapong, Narongsak Chaiyabutr, Thanida Nampimoon, Sumpun Thammacharoen
{"title":"Physiological responses of the monocled cobra (<i>Naja kaouthia</i> Lesson, 1831) including venom production, to high ambient temperature exposure.","authors":"Taksa Vasaruchapong, Narongsak Chaiyabutr, Thanida Nampimoon, Sumpun Thammacharoen","doi":"10.1590/1678-9199-JVATITD-2024-0058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Temperature regulation is essentially important for survival of poikilotherms such as snakes. Body temperature is regulated by snakes through behavioral and physiological responses. The global-warming crisis, combined with the need to house large population of snakes in limited spaces, increases the likelihood of exposing snakes to high ambient temperature (HTa), requiring it reliance on physiological responses. This study aimed to study the effect of HTa exposure on physiological responses and venom production, which have rarely been studied.</p><p><strong>Methods: </strong>Eleven adult monocled cobras (<i>Naja kaouthia</i> Lesson, 1831) were divided into two groups. The concurrent control group was housed in a temperature-controlled room, and the heat exposed group was housed in the same room with gradually increasing temperatures (25°C-35°C) for 4 h on four consecutive days. Data were collected 3 days before the experiment as the baseline and then compared with day 1 and day 4 after HTa exposure data representing immediate and prolonged effects. Body temperature, body weight, water intake, heart rate, hematology, plasma biochemistry, body-fluid compartments, hormonal response, heat shock protein expression and venom production were measured.</p><p><strong>Results: </strong>In response to HTa exposure, body temperature and heart rate increased, plasma volume significantly decreased, but water intake increased. Hematocrit and plasma protein progressively decreased in the latter stages of experimentation, but HTa diminished this effect. HTa only increased plasma corticosterone on day 1. Exposure to HTa increased venom protein concentration on day 4 and diminished the decreased proportion effect of frequent venom collection on phospholipase A<sub>2</sub> component.</p><p><strong>Conclusion: </strong>Increased heart rate and fluid shift from the intravascular compartment appeared to be the underlying mechanism for heat dissipation during HTa exposure. Under the study condition, HTa caused heat stress, but the snake could adapt after continued exposure. Additionally, HTa increased venom protein concentration in <i>N. kaouthia</i>, particularly phospholipase A<sub>2</sub> component.</p>","PeriodicalId":17565,"journal":{"name":"Journal of Venomous Animals and Toxins Including Tropical Diseases","volume":"31 ","pages":"e20240058"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Venomous Animals and Toxins Including Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1678-9199-JVATITD-2024-0058","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Temperature regulation is essentially important for survival of poikilotherms such as snakes. Body temperature is regulated by snakes through behavioral and physiological responses. The global-warming crisis, combined with the need to house large population of snakes in limited spaces, increases the likelihood of exposing snakes to high ambient temperature (HTa), requiring it reliance on physiological responses. This study aimed to study the effect of HTa exposure on physiological responses and venom production, which have rarely been studied.

Methods: Eleven adult monocled cobras (Naja kaouthia Lesson, 1831) were divided into two groups. The concurrent control group was housed in a temperature-controlled room, and the heat exposed group was housed in the same room with gradually increasing temperatures (25°C-35°C) for 4 h on four consecutive days. Data were collected 3 days before the experiment as the baseline and then compared with day 1 and day 4 after HTa exposure data representing immediate and prolonged effects. Body temperature, body weight, water intake, heart rate, hematology, plasma biochemistry, body-fluid compartments, hormonal response, heat shock protein expression and venom production were measured.

Results: In response to HTa exposure, body temperature and heart rate increased, plasma volume significantly decreased, but water intake increased. Hematocrit and plasma protein progressively decreased in the latter stages of experimentation, but HTa diminished this effect. HTa only increased plasma corticosterone on day 1. Exposure to HTa increased venom protein concentration on day 4 and diminished the decreased proportion effect of frequent venom collection on phospholipase A2 component.

Conclusion: Increased heart rate and fluid shift from the intravascular compartment appeared to be the underlying mechanism for heat dissipation during HTa exposure. Under the study condition, HTa caused heat stress, but the snake could adapt after continued exposure. Additionally, HTa increased venom protein concentration in N. kaouthia, particularly phospholipase A2 component.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
8.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Journal of Venomous Animals and Toxins including Tropical Diseases (JVATiTD) is a non-commercial academic open access publication dedicated to research on all aspects of toxinology, venomous animals and tropical diseases. Its interdisciplinary content includes original scientific articles covering research on toxins derived from animals, plants and microorganisms. Topics of interest include, but are not limited to:systematics and morphology of venomous animals;physiology, biochemistry, pharmacology and immunology of toxins;epidemiology, clinical aspects and treatment of envenoming by different animals, plants and microorganisms;development and evaluation of antivenoms and toxin-derivative products;epidemiology, clinical aspects and treatment of tropical diseases (caused by virus, bacteria, algae, fungi and parasites) including the neglected tropical diseases (NTDs) defined by the World Health Organization.
期刊最新文献
Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain. Physiological responses of the monocled cobra (Naja kaouthia Lesson, 1831) including venom production, to high ambient temperature exposure. Rhopalurus junceus scorpion venom induces G2/M cell cycle arrest and apoptotic cell death in human non-small lung cancer cell lines. Phα1β interaction with the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG channel. Histopathological characterization of skin and muscle lesions induced by lionfish (Pterois volitans) venom in a murine experimental model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1