RGD hydrogel-loaded ADSC extracellular vesicles mitigate uranium-induced renal injury via TLR4/NF-κB pathway inhibition.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-02-17 DOI:10.1186/s12951-025-03176-6
Xi Chen, Chun-Mei Dai, Bin Zhang, Wan-Xin Zhang, Zheng-Hong Huang, Jiu-Yi Jiang, Shi-Qi Hu, Jia-Hua Ma, Jia-Fu Feng
{"title":"RGD hydrogel-loaded ADSC extracellular vesicles mitigate uranium-induced renal injury via TLR4/NF-κB pathway inhibition.","authors":"Xi Chen, Chun-Mei Dai, Bin Zhang, Wan-Xin Zhang, Zheng-Hong Huang, Jiu-Yi Jiang, Shi-Qi Hu, Jia-Hua Ma, Jia-Fu Feng","doi":"10.1186/s12951-025-03176-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Uranium-induced kidney damage represents a major health concern due to its toxic effects, including mitochondrial dysfunction and inflammation. Mitochondrial DNA (mtDNA)-mediated pyroptosis is a critical pathway in the pathogenesis of renal injury. The toll-like receptor 4 / nuclear factor-kappa B (TLR4/NF-κB) signaling pathway plays a pivotal role in this process. Recent studies have shown that extracellular vesicles derived from adipose-derived stem cells (ADSCs-EVs) possess therapeutic potential due to their anti-inflammatory and regenerative properties. Incorporating ADSCs-EVs into arginine-glycine-aspartate (RGD), hydrogels may enhance their stability and therapeutic efficacy in vivo. This study aims explore the molecular mechanism by which RGD hydrogel-loaded ADSCs-EVs modulate mtDNA-mediated pyroptosis by suppressing the TLR4/NF-κB signaling pathway to alleviate uranium-induced kidney injury.</p><p><strong>Results: </strong>Repairing mitochondrial dysfunction was found to mitigate mtDNA leakage, thereby inhibiting renal pyroptosis. ADSCs-EVs alleviated uranium-induced renal cell damage by suppressing the TLR4/NF-κB signaling pathway. In vivo animal experiments confirmed that RGD hydrogel-loaded ADSCs-EVs enhanced their stability in the body and improved their therapeutic efficacy against kidney injury.</p><p><strong>Conclusion: </strong>Our findings reveal that RGD hydrogel-loaded ADSCs-EVs effectively inhibit the TLR4/NF-κB signaling pathway, preventing mtDNA-mediated pyroptosis and alleviating uranium-induced kidney damage. This elucidation provides a novel strategy for utilizing RGD hydrogel-loaded ADSCs-EVs in treating kidney injury.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"114"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03176-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Uranium-induced kidney damage represents a major health concern due to its toxic effects, including mitochondrial dysfunction and inflammation. Mitochondrial DNA (mtDNA)-mediated pyroptosis is a critical pathway in the pathogenesis of renal injury. The toll-like receptor 4 / nuclear factor-kappa B (TLR4/NF-κB) signaling pathway plays a pivotal role in this process. Recent studies have shown that extracellular vesicles derived from adipose-derived stem cells (ADSCs-EVs) possess therapeutic potential due to their anti-inflammatory and regenerative properties. Incorporating ADSCs-EVs into arginine-glycine-aspartate (RGD), hydrogels may enhance their stability and therapeutic efficacy in vivo. This study aims explore the molecular mechanism by which RGD hydrogel-loaded ADSCs-EVs modulate mtDNA-mediated pyroptosis by suppressing the TLR4/NF-κB signaling pathway to alleviate uranium-induced kidney injury.

Results: Repairing mitochondrial dysfunction was found to mitigate mtDNA leakage, thereby inhibiting renal pyroptosis. ADSCs-EVs alleviated uranium-induced renal cell damage by suppressing the TLR4/NF-κB signaling pathway. In vivo animal experiments confirmed that RGD hydrogel-loaded ADSCs-EVs enhanced their stability in the body and improved their therapeutic efficacy against kidney injury.

Conclusion: Our findings reveal that RGD hydrogel-loaded ADSCs-EVs effectively inhibit the TLR4/NF-κB signaling pathway, preventing mtDNA-mediated pyroptosis and alleviating uranium-induced kidney damage. This elucidation provides a novel strategy for utilizing RGD hydrogel-loaded ADSCs-EVs in treating kidney injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Epitope-focused vaccine immunogens design using tailored horseshoe-shaped scaffold. Modulating metal-organic frameworks by surface engineering of stearic acid modification for follicular drug delivery and enhanced hair growth promotion. Retraction Note: Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. Surface-engineered bio-manufactured gas vesicles for multimodal imaging of glioma. Inflammatory memory-activated biomimetic nanovesicles regulate neutrophil plasticity and metabolic reprogramming for rapid diabetic wound healing via targeting miR-193a-5p/TLR4/JNK/P38 MAPK pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1