[Immobilization of Heavy Metals in Municipal Sludge by Co-pyrolysis of Shaddock Peel and Sludge].

Q2 Environmental Science 环境科学 Pub Date : 2025-02-08 DOI:10.13227/j.hjkx.202312034
Xiao-Fang Shen, Xin-Yan Gong, Xian Yuan, Qing-Hua Li
{"title":"[Immobilization of Heavy Metals in Municipal Sludge by Co-pyrolysis of Shaddock Peel and Sludge].","authors":"Xiao-Fang Shen, Xin-Yan Gong, Xian Yuan, Qing-Hua Li","doi":"10.13227/j.hjkx.202312034","DOIUrl":null,"url":null,"abstract":"<p><p>Co-pyrolysis with other biomass is a promising method for municipal sludge treatment and has attracted great attention. However, the dominant mechanism by which the heavy metals in municipal sludge are immobilized during the co-pyrolysis remains unknown. In this study, municipal-sludge biochar was prepared by pyrolysis and co-pyrolysis, and the effects of pyrolysis temperature (400-800 ℃) and the addition of shaddock peel on the properties of biochar, the contents of heavy metals (Cu, Zn, Pb, Cd, Ni, and Cr), and their environmental risks were investigated. Based on the analysis of characterization results and heavy metal contents in the biochar, it was observed that co-pyrolysis promoted the formation of stabilized crystalline minerals (e.g., CdPbO<sub>3</sub>, Pb<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH, CuCl, and ZnS), which reduced the potential risk of heavy metals in biochar. Furthermore, aromatic groups were detected and could interact with heavy metals through cation-π interaction. Further analysis revealed that the immobilization was enhanced by the complexation between heavy metals and the functional groups in biochar, such as -OH and -CO-NH-, which played the main role in the stabilization of Cu and Ni at low pyrolysis temperatures. However, surface sorption and pore filling, due to the increase in specific surface area and porosity, dominated the immobilization of Cd, Cr, Pb, and Zn. The leaching concentrations of heavy metals in co-pyrolysis biochar were much lower than the limit values of \"Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity\" (GB 5085.2-2007) and those by US EPA 1311, 1990. Additionally, the potential ecological risk index (RI value) of heavy metals in biochar was significantly reduced by co-pyrolysis compared to that of sludge or biochar without the co-pyrolysis. This study reveals the dominant immobilization mechanism for specific heavy metals during co-pyrolysis of municipal sludge with shaddock peel and provides an alternative practical strategy for the safe disposal of municipal sludge and biomass wastes.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 2","pages":"944-955"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202312034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Co-pyrolysis with other biomass is a promising method for municipal sludge treatment and has attracted great attention. However, the dominant mechanism by which the heavy metals in municipal sludge are immobilized during the co-pyrolysis remains unknown. In this study, municipal-sludge biochar was prepared by pyrolysis and co-pyrolysis, and the effects of pyrolysis temperature (400-800 ℃) and the addition of shaddock peel on the properties of biochar, the contents of heavy metals (Cu, Zn, Pb, Cd, Ni, and Cr), and their environmental risks were investigated. Based on the analysis of characterization results and heavy metal contents in the biochar, it was observed that co-pyrolysis promoted the formation of stabilized crystalline minerals (e.g., CdPbO3, Pb5(PO43OH, CuCl, and ZnS), which reduced the potential risk of heavy metals in biochar. Furthermore, aromatic groups were detected and could interact with heavy metals through cation-π interaction. Further analysis revealed that the immobilization was enhanced by the complexation between heavy metals and the functional groups in biochar, such as -OH and -CO-NH-, which played the main role in the stabilization of Cu and Ni at low pyrolysis temperatures. However, surface sorption and pore filling, due to the increase in specific surface area and porosity, dominated the immobilization of Cd, Cr, Pb, and Zn. The leaching concentrations of heavy metals in co-pyrolysis biochar were much lower than the limit values of "Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity" (GB 5085.2-2007) and those by US EPA 1311, 1990. Additionally, the potential ecological risk index (RI value) of heavy metals in biochar was significantly reduced by co-pyrolysis compared to that of sludge or biochar without the co-pyrolysis. This study reveals the dominant immobilization mechanism for specific heavy metals during co-pyrolysis of municipal sludge with shaddock peel and provides an alternative practical strategy for the safe disposal of municipal sludge and biomass wastes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
期刊最新文献
[Immobilization of Heavy Metals in Municipal Sludge by Co-pyrolysis of Shaddock Peel and Sludge]. [Impact of Differences in Vegetation Cover on Soil Organic Carbon Composition and Stability in Caohai]. [Analysis of Carbon Emission Characteristics and Influencing Factors in Urban Wastewater Collection Systems under the Background of Quality Improvement and Efficiency Enhancement]. [Analysis of Soil Property Factors Restricting the Remediation Effect of Passivators on Arsenic and Cadmium Pollution in Purple Soil]. [Analysis of Spatiotemporal Changes and Driving Factors of Ecological Environment Quality in the Yellow River Basin].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1