Upregulation of YY1 in M2 macrophages promotes secretion of exosomes containing hsa-circ-0000326 via super-enhancers to facilitate prostate cancer progression.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-02-17 DOI:10.1007/s11010-025-05222-1
Han Guan, Huaixiang Tao, Jinguang Luo, Lilin Wan, Hao Hu, Long Chen, Zhiyuan Wen, Yuxuan Tao, Saisai Chen, Mingli Gu
{"title":"Upregulation of YY1 in M2 macrophages promotes secretion of exosomes containing hsa-circ-0000326 via super-enhancers to facilitate prostate cancer progression.","authors":"Han Guan, Huaixiang Tao, Jinguang Luo, Lilin Wan, Hao Hu, Long Chen, Zhiyuan Wen, Yuxuan Tao, Saisai Chen, Mingli Gu","doi":"10.1007/s11010-025-05222-1","DOIUrl":null,"url":null,"abstract":"<p><p>The transcription factor YY1 is significantly upregulated in M2 macrophages, which can facilitate the malignant progression of multiple cancers. However, the precise mechanisms underlying the influence of YY1-high M2 macrophages on prostate cancer (PCa) progression remain elusive. Therefore, this study aims to elucidate the specific mechanisms by which YY1-high M2 macrophages influence PCa progression. Cell proliferation was assessed through colony formation and CCK8 assays. To evaluate cell invasion and migration, Transwell and wound healing assays were utilized. We investigated the effects of exosomes derived from M2 macrophages overexpressing YY1 on PCa cells. Subsequently, circRNA microarrays and qRT-PCR identified a high level of hsa-circ-0000326 in exosomes. Nucleoplasmic isolation, luciferase reporter, RNA-pulldown assays elucidated the functions and downstream targets (miR-338-3p and AR) of hsa-circ-0000326. Chromatin immunoprecipitation sequencing, chromatin conformation capture, qRT-PCR, western blotting, and agarose-electrophoresis assays examined YY1's role in transcribing the hsa-circ-0000326 maternal gene MALAT1 as well as its modulation of QKI expression. Our results demonstrated that the secretion of exosomes enriched with hsa-circ-0000326 by YY1-overexpressing M2 macrophages contributes to PCa metastasis. Hsa-circ-0000326 functions as a competitive endogenous RNA against miR-338-3p to promote androgen receptor levels in PCa cells. Mechanistic investigations revealed that YY1 binds to the super-enhancer region of MALAT1 enhancing transcriptional activity for this gene. Simultaneously, YY1 upregulates QKI expression, facilitating splicing events leading to the formation of hsa-circ-0000326. Inhibiting exosomal hsa-circ-0000326 presents a potential therapeutic approach for treating metastatic PCa.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05222-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transcription factor YY1 is significantly upregulated in M2 macrophages, which can facilitate the malignant progression of multiple cancers. However, the precise mechanisms underlying the influence of YY1-high M2 macrophages on prostate cancer (PCa) progression remain elusive. Therefore, this study aims to elucidate the specific mechanisms by which YY1-high M2 macrophages influence PCa progression. Cell proliferation was assessed through colony formation and CCK8 assays. To evaluate cell invasion and migration, Transwell and wound healing assays were utilized. We investigated the effects of exosomes derived from M2 macrophages overexpressing YY1 on PCa cells. Subsequently, circRNA microarrays and qRT-PCR identified a high level of hsa-circ-0000326 in exosomes. Nucleoplasmic isolation, luciferase reporter, RNA-pulldown assays elucidated the functions and downstream targets (miR-338-3p and AR) of hsa-circ-0000326. Chromatin immunoprecipitation sequencing, chromatin conformation capture, qRT-PCR, western blotting, and agarose-electrophoresis assays examined YY1's role in transcribing the hsa-circ-0000326 maternal gene MALAT1 as well as its modulation of QKI expression. Our results demonstrated that the secretion of exosomes enriched with hsa-circ-0000326 by YY1-overexpressing M2 macrophages contributes to PCa metastasis. Hsa-circ-0000326 functions as a competitive endogenous RNA against miR-338-3p to promote androgen receptor levels in PCa cells. Mechanistic investigations revealed that YY1 binds to the super-enhancer region of MALAT1 enhancing transcriptional activity for this gene. Simultaneously, YY1 upregulates QKI expression, facilitating splicing events leading to the formation of hsa-circ-0000326. Inhibiting exosomal hsa-circ-0000326 presents a potential therapeutic approach for treating metastatic PCa.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
The molecular mechanism by which CTSB degrades FPN to disrupt macrophage iron homeostasis and promote the progression of atherosclerosis. Upregulation of YY1 in M2 macrophages promotes secretion of exosomes containing hsa-circ-0000326 via super-enhancers to facilitate prostate cancer progression. Cancer-associated fibroblasts promote growth and dissemination of esophageal squamous cell carcinoma cells by secreting WNT family member 5A. Decorin: matrix-based pan-cancer tumor suppressor. The role of physical exercise in modulating microRNAs expression in acute myocardial infarction: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1