Eman Alqaissi, Abdulmohsen Algarni, Mohammed Alshehri, Husain Alkhaldy, Afnan Alshehri
{"title":"A recursive embedding and clustering technique for unraveling asymptomatic kidney disease using laboratory data and machine learning.","authors":"Eman Alqaissi, Abdulmohsen Algarni, Mohammed Alshehri, Husain Alkhaldy, Afnan Alshehri","doi":"10.1038/s41598-025-89499-8","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional methods for diagnosing chronic kidney disease (CKD) via laboratory data may not be capable of identifying early kidney disease. Kidney biopsy is unsuitable for regular screening, and imaging tests are costly and time-consuming. Several studies have implemented artificial intelligence (AI) to detect CKD. However, these studies used small datasets, had overfitting problems, lacked generalizability, or used complex algorithms that may require additional computational resources. In this study, we collected and analyzed center-based data and used a recursive embedding and clustering technique to reduce their dimensionality. We identified three clusters from 1600 records. We focused on the second cluster, as most of the characteristics had values in the normal ranges. Normal range values for most indicators generally represent stable kidney function with minor signs of strain, which often remain asymptomatic. Creatinine and eGFR levels within the threshold ranges indicate early kidney stress without filtration issues, which require close monitoring. The gradient-boosting algorithm showed superior performance among all algorithms in detecting these clusters. We evaluated an additional 400 unlabeled records to validate our method. This research can help clinicians automatically detect initial signs in numerous patients via routine tests to prevent the consequences of late-stage CKD detection.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5820"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89499-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional methods for diagnosing chronic kidney disease (CKD) via laboratory data may not be capable of identifying early kidney disease. Kidney biopsy is unsuitable for regular screening, and imaging tests are costly and time-consuming. Several studies have implemented artificial intelligence (AI) to detect CKD. However, these studies used small datasets, had overfitting problems, lacked generalizability, or used complex algorithms that may require additional computational resources. In this study, we collected and analyzed center-based data and used a recursive embedding and clustering technique to reduce their dimensionality. We identified three clusters from 1600 records. We focused on the second cluster, as most of the characteristics had values in the normal ranges. Normal range values for most indicators generally represent stable kidney function with minor signs of strain, which often remain asymptomatic. Creatinine and eGFR levels within the threshold ranges indicate early kidney stress without filtration issues, which require close monitoring. The gradient-boosting algorithm showed superior performance among all algorithms in detecting these clusters. We evaluated an additional 400 unlabeled records to validate our method. This research can help clinicians automatically detect initial signs in numerous patients via routine tests to prevent the consequences of late-stage CKD detection.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.