{"title":"Convective stability of the critical waves of an FKPP-type model for self-organized growth.","authors":"Florian Kreten","doi":"10.1007/s00285-025-02189-x","DOIUrl":null,"url":null,"abstract":"<p><p>We construct the traveling wave solutions of an FKPP growth process of two densities of particles, and prove that the critical traveling waves are locally stable in a space where the perturbations can grow exponentially at the back of the wave. The considered reaction-diffusion system was introduced by Hannezo et al. (Cell 171(1):242-255, 2017) in the context of branching morphogenesis: active, branching particles accumulate inactive particles, which do not react. Thus, the system features a continuum of steady state solutions, complicating the analysis. We adopt a result by Faye and Holzer (J Differ Equ 269(9):6559-6601, 2020) for proving the stability of the critical traveling waves, and modify the semi-group estimates to spaces with unbounded weights. We use a Feynman-Kac formula to get an exponential a priori estimate for the tail of the PDE, a novel and simple approach.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 3","pages":"33"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02189-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We construct the traveling wave solutions of an FKPP growth process of two densities of particles, and prove that the critical traveling waves are locally stable in a space where the perturbations can grow exponentially at the back of the wave. The considered reaction-diffusion system was introduced by Hannezo et al. (Cell 171(1):242-255, 2017) in the context of branching morphogenesis: active, branching particles accumulate inactive particles, which do not react. Thus, the system features a continuum of steady state solutions, complicating the analysis. We adopt a result by Faye and Holzer (J Differ Equ 269(9):6559-6601, 2020) for proving the stability of the critical traveling waves, and modify the semi-group estimates to spaces with unbounded weights. We use a Feynman-Kac formula to get an exponential a priori estimate for the tail of the PDE, a novel and simple approach.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.