Seongwook Min, Jaehun An, Jae Hee Lee, Ji Hoon Kim, Daniel J. Joe, Soo Hwan Eom, Chang D. Yoo, Hyo-Suk Ahn, Jin-Young Hwang, Sheng Xu, John A. Rogers, Keon Jae Lee
{"title":"Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation","authors":"Seongwook Min, Jaehun An, Jae Hee Lee, Ji Hoon Kim, Daniel J. Joe, Soo Hwan Eom, Chang D. Yoo, Hyo-Suk Ahn, Jin-Young Hwang, Sheng Xu, John A. Rogers, Keon Jae Lee","doi":"10.1038/s41569-025-01127-0","DOIUrl":null,"url":null,"abstract":"<p>With advances in materials science and medical technology, wearable sensors have become crucial tools for the early diagnosis and continuous monitoring of numerous cardiovascular diseases, including arrhythmias, hypertension and coronary artery disease. These devices employ various sensing mechanisms, such as mechanoelectric, optoelectronic, ultrasonic and electrophysiological methods, to measure vital biosignals, including pulse rate, blood pressure and changes in heart rhythm. In this Review, we provide a comprehensive overview of the current state of wearable cardiovascular sensors, focusing particularly on those that measure blood pressure. We explore biosignal sensing principles, discuss blood pressure estimation methods (including machine learning algorithms) and summarize the latest advances in cuffless wearable blood pressure sensors. Finally, we highlight the challenges of and offer insights into potential pathways for the practical application of cuffless wearable blood pressure sensors in the medical field from both technical and clinical perspectives.</p>","PeriodicalId":18976,"journal":{"name":"Nature Reviews Cardiology","volume":"85 1","pages":""},"PeriodicalIF":41.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41569-025-01127-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With advances in materials science and medical technology, wearable sensors have become crucial tools for the early diagnosis and continuous monitoring of numerous cardiovascular diseases, including arrhythmias, hypertension and coronary artery disease. These devices employ various sensing mechanisms, such as mechanoelectric, optoelectronic, ultrasonic and electrophysiological methods, to measure vital biosignals, including pulse rate, blood pressure and changes in heart rhythm. In this Review, we provide a comprehensive overview of the current state of wearable cardiovascular sensors, focusing particularly on those that measure blood pressure. We explore biosignal sensing principles, discuss blood pressure estimation methods (including machine learning algorithms) and summarize the latest advances in cuffless wearable blood pressure sensors. Finally, we highlight the challenges of and offer insights into potential pathways for the practical application of cuffless wearable blood pressure sensors in the medical field from both technical and clinical perspectives.
期刊介绍:
Nature Reviews Cardiology aims to be the go-to source for reviews and commentaries in the scientific and clinical communities it serves. Focused on providing authoritative and accessible articles enriched with clear figures and tables, the journal strives to offer unparalleled service to authors, referees, and readers, maximizing the usefulness and impact of each publication. It covers a broad range of content types, including Research Highlights, Comments, News & Views, Reviews, Consensus Statements, and Perspectives, catering to practising cardiologists and cardiovascular research scientists. Authored by renowned clinicians, academics, and researchers, the content targets readers in the biological and medical sciences, ensuring accessibility across various disciplines. In-depth Reviews offer up-to-date information, while Consensus Statements provide evidence-based recommendations. Perspectives and News & Views present topical discussions and opinions, and the Research Highlights section filters primary research from cardiovascular and general medical journals. As part of the Nature Reviews portfolio, Nature Reviews Cardiology maintains high standards and a wide reach.