Xuekui Wang, Yue Xu, Canqing Yu, Ruhua Deng, Yang Chen, Kai Jiang, Jiayi Liang, Congjiao Hu, Xingbo Yang, Baowei Zhang, Xun Yuan, Cancan Pan, Dandan Wang, Yao Sun, Yaozu Xiang
{"title":"Periodontitis-related myocardial fibrosis by expansion of collagen-producing SiglecF+ neutrophils","authors":"Xuekui Wang, Yue Xu, Canqing Yu, Ruhua Deng, Yang Chen, Kai Jiang, Jiayi Liang, Congjiao Hu, Xingbo Yang, Baowei Zhang, Xun Yuan, Cancan Pan, Dandan Wang, Yao Sun, Yaozu Xiang","doi":"10.1093/eurheartj/ehaf049","DOIUrl":null,"url":null,"abstract":"Backgrounds and Aims Patients with periodontitis (PD) are prone to developing myocardial infarction (MI), yet the prognosis and mechanisms remain unclear. Given the presumed close association of neutrophils with both conditions, this study aims to elucidate the roles of neutrophils in mediating the interaction between PD and MI. Methods Three prospective cohorts and PD + MI mouse model were investigated to assess the effects of PD on MI prognosis. Single-cell-RNA sequencing and genome-wide association study were employed to identify the neutrophil subtype involved. To characterize the function of SiglecF+ neutrophils, bone marrow transplantation, Edu-pulse chasing, lineage tracing, and collagen contraction assay were utilized. Adoptive neutrophil transfer, conditional Siglecf knockout and lipid nanoparticles facilitating local SiglecF+ neutrophils depletion was harnessed to explore the roles of SiglecF+ neutrophils in MI repair. Results Persisting but not short-term PD upset MI prognosis (cardiac fibrosis and function) in human and mice. Bone marrow neutrophils of PD were intrinsically skewed toward longer-lived SiglecF+ neutrophil differentiation, a subtype that was converted by GMCSF or TGFβ in PPARγ-dependent manner. SiglecF+ neutrophils were expanded in infarcted PD heart where they deposit collagen and activate fibroblasts to instigate excessive fibrosis. SiglecF+ neutrophil depletion was efficacious for mitigating fibrosis. Conclusions This study demonstrated that long-lasting PD-aggravated MI prognosis by expanding scar-associated SiglecF+ neutrophils into the heart and highlighted the clinical relevance of oral health examination for treating MI in a holistic fashion.","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":"71 1","pages":""},"PeriodicalIF":37.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehaf049","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Backgrounds and Aims Patients with periodontitis (PD) are prone to developing myocardial infarction (MI), yet the prognosis and mechanisms remain unclear. Given the presumed close association of neutrophils with both conditions, this study aims to elucidate the roles of neutrophils in mediating the interaction between PD and MI. Methods Three prospective cohorts and PD + MI mouse model were investigated to assess the effects of PD on MI prognosis. Single-cell-RNA sequencing and genome-wide association study were employed to identify the neutrophil subtype involved. To characterize the function of SiglecF+ neutrophils, bone marrow transplantation, Edu-pulse chasing, lineage tracing, and collagen contraction assay were utilized. Adoptive neutrophil transfer, conditional Siglecf knockout and lipid nanoparticles facilitating local SiglecF+ neutrophils depletion was harnessed to explore the roles of SiglecF+ neutrophils in MI repair. Results Persisting but not short-term PD upset MI prognosis (cardiac fibrosis and function) in human and mice. Bone marrow neutrophils of PD were intrinsically skewed toward longer-lived SiglecF+ neutrophil differentiation, a subtype that was converted by GMCSF or TGFβ in PPARγ-dependent manner. SiglecF+ neutrophils were expanded in infarcted PD heart where they deposit collagen and activate fibroblasts to instigate excessive fibrosis. SiglecF+ neutrophil depletion was efficacious for mitigating fibrosis. Conclusions This study demonstrated that long-lasting PD-aggravated MI prognosis by expanding scar-associated SiglecF+ neutrophils into the heart and highlighted the clinical relevance of oral health examination for treating MI in a holistic fashion.
期刊介绍:
The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters.
In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.