Andrey Buyan, Georgy Meshcheryakov, Viacheslav Safronov, Sergey Abramov, Alexandr Boytsov, Vladimir Nozdrin, Eugene F. Baulin, Semyon Kolmykov, Jeff Vierstra, Fedor Kolpakov, Vsevolod J. Makeev, Ivan V. Kulakovskiy
{"title":"Statistical framework for calling allelic imbalance in high-throughput sequencing data","authors":"Andrey Buyan, Georgy Meshcheryakov, Viacheslav Safronov, Sergey Abramov, Alexandr Boytsov, Vladimir Nozdrin, Eugene F. Baulin, Semyon Kolmykov, Jeff Vierstra, Fedor Kolpakov, Vsevolod J. Makeev, Ivan V. Kulakovskiy","doi":"10.1038/s41467-024-55513-2","DOIUrl":null,"url":null,"abstract":"<p>High-throughput sequencing facilitates large-scale studies of gene regulation and allows tracing the associations of individual genomic variants with changes in gene regulation and expression. Compared to classic association studies, the assessment of an allelic imbalance at heterozygous variants captures functional variant effects with smaller sample sizes, higher sensitivity, and better resolution. Yet, identification of allele-specific variants from allelic read counts remains challenging due to data-dependent biases and overdispersion arising from technical and biological variability. We present MIXALIME, a novel computational framework for calling allele-specific variants in diverse omics data with a repertoire of statistical models accounting for read mapping bias and copy number variation. We benchmark MIXALIME with DNase-Seq, ATAC-Seq, and CAGE-Seq data, and we demonstrate that the allelic imbalance highlights causal variants in GWAS results. Finally, as a showcase of the large-scale practical application of MIXALIME, we present an atlas of variants exhibiting allele-specific chromatin accessibility, built from thousands of available datasets obtained from diverse cell types.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"122 32 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55513-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput sequencing facilitates large-scale studies of gene regulation and allows tracing the associations of individual genomic variants with changes in gene regulation and expression. Compared to classic association studies, the assessment of an allelic imbalance at heterozygous variants captures functional variant effects with smaller sample sizes, higher sensitivity, and better resolution. Yet, identification of allele-specific variants from allelic read counts remains challenging due to data-dependent biases and overdispersion arising from technical and biological variability. We present MIXALIME, a novel computational framework for calling allele-specific variants in diverse omics data with a repertoire of statistical models accounting for read mapping bias and copy number variation. We benchmark MIXALIME with DNase-Seq, ATAC-Seq, and CAGE-Seq data, and we demonstrate that the allelic imbalance highlights causal variants in GWAS results. Finally, as a showcase of the large-scale practical application of MIXALIME, we present an atlas of variants exhibiting allele-specific chromatin accessibility, built from thousands of available datasets obtained from diverse cell types.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.