Statistical framework for calling allelic imbalance in high-throughput sequencing data

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-02-18 DOI:10.1038/s41467-024-55513-2
Andrey Buyan, Georgy Meshcheryakov, Viacheslav Safronov, Sergey Abramov, Alexandr Boytsov, Vladimir Nozdrin, Eugene F. Baulin, Semyon Kolmykov, Jeff Vierstra, Fedor Kolpakov, Vsevolod J. Makeev, Ivan V. Kulakovskiy
{"title":"Statistical framework for calling allelic imbalance in high-throughput sequencing data","authors":"Andrey Buyan, Georgy Meshcheryakov, Viacheslav Safronov, Sergey Abramov, Alexandr Boytsov, Vladimir Nozdrin, Eugene F. Baulin, Semyon Kolmykov, Jeff Vierstra, Fedor Kolpakov, Vsevolod J. Makeev, Ivan V. Kulakovskiy","doi":"10.1038/s41467-024-55513-2","DOIUrl":null,"url":null,"abstract":"<p>High-throughput sequencing facilitates large-scale studies of gene regulation and allows tracing the associations of individual genomic variants with changes in gene regulation and expression. Compared to classic association studies, the assessment of an allelic imbalance at heterozygous variants captures functional variant effects with smaller sample sizes, higher sensitivity, and better resolution. Yet, identification of allele-specific variants from allelic read counts remains challenging due to data-dependent biases and overdispersion arising from technical and biological variability. We present MIXALIME, a novel computational framework for calling allele-specific variants in diverse omics data with a repertoire of statistical models accounting for read mapping bias and copy number variation. We benchmark MIXALIME with DNase-Seq, ATAC-Seq, and CAGE-Seq data, and we demonstrate that the allelic imbalance highlights causal variants in GWAS results. Finally, as a showcase of the large-scale practical application of MIXALIME, we present an atlas of variants exhibiting allele-specific chromatin accessibility, built from thousands of available datasets obtained from diverse cell types.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"122 32 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55513-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput sequencing facilitates large-scale studies of gene regulation and allows tracing the associations of individual genomic variants with changes in gene regulation and expression. Compared to classic association studies, the assessment of an allelic imbalance at heterozygous variants captures functional variant effects with smaller sample sizes, higher sensitivity, and better resolution. Yet, identification of allele-specific variants from allelic read counts remains challenging due to data-dependent biases and overdispersion arising from technical and biological variability. We present MIXALIME, a novel computational framework for calling allele-specific variants in diverse omics data with a repertoire of statistical models accounting for read mapping bias and copy number variation. We benchmark MIXALIME with DNase-Seq, ATAC-Seq, and CAGE-Seq data, and we demonstrate that the allelic imbalance highlights causal variants in GWAS results. Finally, as a showcase of the large-scale practical application of MIXALIME, we present an atlas of variants exhibiting allele-specific chromatin accessibility, built from thousands of available datasets obtained from diverse cell types.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Negative global-scale association between genetic diversity and speciation rates in mammals Crystal symmetry modification enables high-ranged in-plane thermoelectric performance in n-type SnSe crystals Structural basis of urea transport by Arabidopsis thaliana DUR3 Organelle-like structural evolution of coacervate droplets induced by photopolymerization Activity-based sensing reveals elevated labile copper promotes liver aging via hepatic ALDH1A1 depletion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1