Regulation of Anderson localization for enhancing thermoelectric properties in Mn doped AgSbSe2 compounds†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-02-19 DOI:10.1039/D4TA09176K
Yaqiong Zhong, Keke Liu, Shuo Chen, Hao Sang, Xili Wen, Qingjie Zhang, Jinsong Wu, Pierre Ferdinand Poudeu Poudeu, Xianli Su, Ctirad Uher and Xinfeng Tang
{"title":"Regulation of Anderson localization for enhancing thermoelectric properties in Mn doped AgSbSe2 compounds†","authors":"Yaqiong Zhong, Keke Liu, Shuo Chen, Hao Sang, Xili Wen, Qingjie Zhang, Jinsong Wu, Pierre Ferdinand Poudeu Poudeu, Xianli Su, Ctirad Uher and Xinfeng Tang","doi":"10.1039/D4TA09176K","DOIUrl":null,"url":null,"abstract":"<p >So far, the influence of Anderson localization on the thermoelectric performance of materials has been somewhat ambiguous. Herein, we establish that doping with Mn significantly weakens the Anderson localization in AgSbSe<small><sub>2</sub></small>. The temperature dependent electronic transport properties of Mn-doped AgSbSe<small><sub>2</sub></small> compounds document an Anderson localization–delocalization transition that is revealed by three distinct stages: variable-range hopping conduction, nearest-neighbor hopping conduction, and band conduction. Doping AgSbSe<small><sub>2</sub></small> compounds with Mn reduces the electronic localization barrier and shifts electron localization to a lower temperature range. Such mitigation of the Anderson localization effect greatly improves the electrical transport properties. Ultimately, the electrical conductivity was increased from 1.01 × 10<small><sup>3</sup></small> Ω<small><sup>−1</sup></small> m<small><sup>−1</sup></small> at room temperature for pristine AgSbSe<small><sub>2</sub></small> to 1.28 × 10<small><sup>4</sup></small> Ω<small><sup>−1</sup></small> m<small><sup>−1</sup></small> for AgSb<small><sub>0.96</sub></small>Mn<small><sub>0.04</sub></small>Se<small><sub>2</sub></small>. Consequently, the power factor was improved from 0.11 mW m<small><sup>−1</sup></small> K<small><sup>−2</sup></small> to 0.52 mW m<small><sup>−1</sup></small> K<small><sup>−2</sup></small>, which corresponds to a fivefold increase compared to pristine AgSbSe<small><sub>2</sub></small>. In conjunction with the intrinsically low lattice thermal conductivity of AgSbSe<small><sub>2</sub></small>, the AgSb<small><sub>0.98</sub></small>Mn<small><sub>0.02</sub></small>Se<small><sub>2</sub></small> sample reaches the highest <em>zT</em> value of 1.1 at 690 K, which is more than a threefold increase in comparison with that of pristine AgSbSe<small><sub>2</sub></small>. This work demonstrates that effective modulation of the Anderson localization can be an effective approach to improve the thermoelectric performance of materials.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 12","pages":" 8706-8714"},"PeriodicalIF":9.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09176k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

So far, the influence of Anderson localization on the thermoelectric performance of materials has been somewhat ambiguous. Herein, we establish that doping with Mn significantly weakens the Anderson localization in AgSbSe2. The temperature dependent electronic transport properties of Mn-doped AgSbSe2 compounds document an Anderson localization–delocalization transition that is revealed by three distinct stages: variable-range hopping conduction, nearest-neighbor hopping conduction, and band conduction. Doping AgSbSe2 compounds with Mn reduces the electronic localization barrier and shifts electron localization to a lower temperature range. Such mitigation of the Anderson localization effect greatly improves the electrical transport properties. Ultimately, the electrical conductivity was increased from 1.01 × 103 Ω−1 m−1 at room temperature for pristine AgSbSe2 to 1.28 × 104 Ω−1 m−1 for AgSb0.96Mn0.04Se2. Consequently, the power factor was improved from 0.11 mW m−1 K−2 to 0.52 mW m−1 K−2, which corresponds to a fivefold increase compared to pristine AgSbSe2. In conjunction with the intrinsically low lattice thermal conductivity of AgSbSe2, the AgSb0.98Mn0.02Se2 sample reaches the highest zT value of 1.1 at 690 K, which is more than a threefold increase in comparison with that of pristine AgSbSe2. This work demonstrates that effective modulation of the Anderson localization can be an effective approach to improve the thermoelectric performance of materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调控Anderson定位以增强Mn掺杂AgSbSe2化合物的热电性能
到目前为止,安德森局域化对材料热电性能的影响还有些模糊。本文中,我们发现掺杂Mn显著削弱了AgSbSe2中的Anderson局域化。mn掺杂AgSbSe2化合物的温度依赖电子输运性质记录了安德森局域-离域转变,该转变由三个不同的阶段揭示:变范围跳变传导、最近邻跳变传导和带传导。用Mn掺杂AgSbSe2化合物降低了电子定位势垒,并将电子定位转移到更低的温度范围。这种安德森局域化效应的缓解大大改善了电输运性质。最终,原始AgSbSe2的电导率从室温下的1.01×103 Ω-1 m-1提高到AgSb0.96Mn0.04Se2的12.77×103 Ω-1 m-1。因此,功率因数从0.11 mW m-1 K-2提高到0.52 mW m-1 K-2,与原始AgSbSe2相比增加了五倍。结合AgSbSe2本身较低的晶格热导率,AgSb0.98Mn0.02Se2样品在690 K时达到最高的zT值1.1,与原始AgSbSe2相比增加了三倍以上。本研究表明,对Anderson局域化进行有效调制是提高材料热电性能的有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Cobalt-free compositionally complex nanocomposites with superior performance and stability for application as oxygen electrodes in Solid Oxide Cells A High-Thermal-Conductivity Composite Film for Encapsulation and Passive Cooling of Solar Modules Elucidating the Effect of Mesopores on the Conversion of Green Furans to Aromatics over Hierarchical Ga-MFI, Ga-MFI/MCM-41 Composites, and Ga-SPP Correction: High-entropy engineering tuning electrochemical activity and stability of a layered double perovskite oxygen electrode for high-performance protonic ceramic cells Quantifying coordination effects for rational design of MXene-based NRR electrocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1