{"title":"Bottom-up assembly of recyclable van der Waals-integrated photocatalysts towards efficient photoelectrocatalytic degradation","authors":"Hua-Jun Chen, Zhao-Ming Lu, Yanling Yang, Xiao-Lei Shi, Jin-Geng Chen, Ze-Nan Hu, Biying Zhang, Yue-Feng Chen, Yu Sun, Zhi-Gang Chen","doi":"10.1039/d4ta07813f","DOIUrl":null,"url":null,"abstract":"Large-scale synthesis of recyclable photocatalysts for pollutant degradation remains a challenge. Epitaxial growth of powdered photocatalysts on recyclable substrates is constrained by the dedicated materials with highly matched lattices and processing compatibility. Here, we propose a bond-free van der Waals-integrated (vdW-integrated) strategy for the seamless integration of materials with significantly different lattice structures and processing conditions. Amorphous carbon-coated photocatalysts with different dimensions can be physically integrated into recyclable carbon textiles (CTs) through vdW interactions for large-scale synthesis. The amorphous carbon coating effectively broadens the spectral response range and enhances the separation of photo-induced carriers. The recyclable van der Waals-integrated (vdW-integrated) photocatalyst can be employed as a recyclable anode to achieve a synergistic degradation of 2,4-dinitrophenol by the combination of electrocatalysis and photocatalysis during photoelectrocatalysis process. In contrast to conventional powdered photocatalysts, recyclable vdW-integrated catalysts demonstrate superior cycling stability and enhanced catalytic efficiency during both photocatalytic and photoelectrocatalytic processes. This straightforward bottom-up vdW-integrated strategy can be readily extended to assemble zero-dimensional (0D), one-dimensional (1D), or two-dimensional (2D) powdered photocatalysts with flexible CTs, enabling the assembly of recyclable vdW-integrated catalysts for various environment-related applications.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"64 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07813f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale synthesis of recyclable photocatalysts for pollutant degradation remains a challenge. Epitaxial growth of powdered photocatalysts on recyclable substrates is constrained by the dedicated materials with highly matched lattices and processing compatibility. Here, we propose a bond-free van der Waals-integrated (vdW-integrated) strategy for the seamless integration of materials with significantly different lattice structures and processing conditions. Amorphous carbon-coated photocatalysts with different dimensions can be physically integrated into recyclable carbon textiles (CTs) through vdW interactions for large-scale synthesis. The amorphous carbon coating effectively broadens the spectral response range and enhances the separation of photo-induced carriers. The recyclable van der Waals-integrated (vdW-integrated) photocatalyst can be employed as a recyclable anode to achieve a synergistic degradation of 2,4-dinitrophenol by the combination of electrocatalysis and photocatalysis during photoelectrocatalysis process. In contrast to conventional powdered photocatalysts, recyclable vdW-integrated catalysts demonstrate superior cycling stability and enhanced catalytic efficiency during both photocatalytic and photoelectrocatalytic processes. This straightforward bottom-up vdW-integrated strategy can be readily extended to assemble zero-dimensional (0D), one-dimensional (1D), or two-dimensional (2D) powdered photocatalysts with flexible CTs, enabling the assembly of recyclable vdW-integrated catalysts for various environment-related applications.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.