{"title":"Theoretical study on the mechanism of electrocatalytic nitrogen reduction of ammonia with single-atom catalyst loaded on CN4","authors":"Dandan Xu, Beibei Yan, Qinghua Liu, Lidong Zhang, Jinglan Wang, Guanyi Chen, Zhanjun Cheng","doi":"10.1016/j.apsusc.2025.162726","DOIUrl":null,"url":null,"abstract":"Electrocatalytic ammonia synthesis is an attractive strategy for low-temperature ammonia production. Designing efficient electrocatalysts with high activity and selectivity for the nitrogen reduction reaction (NRR) remains a significant challenge. In this study, we demonstrate the feasibility of single-atom catalysts (SACs) for NRR using density functional theory (DFT) calculations, focusing on single transition metal (TM) atoms (from Sc to Zn) supported on nitrogen-doped carbon materials (CN<sub>4</sub>). The results show that N<sub>2</sub> molecules can be efficiently activated on TMN<sub>4</sub> in an end-on configuration, followed by the distal associative pathway to achieve NRR ammonia synthesis. Moreover, the calculation results of NRR reaction activity for ten TMN<sub>4</sub> SACs reveal that CrN<sub>4</sub> SAC exhibits high NRR activity with a limiting potential of −0.70 eV and greater reaction selectivity over the competing hydrogen evolution reaction (HER). Multiple-level descriptors (ΔG<sub>*N2</sub>, Bader charge, charge differential density, ELF, pCOHP, and PDOS) reveal the origin of NRR activity from the perspectives of energy and electronic structure. The dissolution potential and AIMD dynamic calculation further verify its structural stability. This work provides theoretical guidance for the rational design, screening, and development of efficient SACs for the NRR process.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"64 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162726","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic ammonia synthesis is an attractive strategy for low-temperature ammonia production. Designing efficient electrocatalysts with high activity and selectivity for the nitrogen reduction reaction (NRR) remains a significant challenge. In this study, we demonstrate the feasibility of single-atom catalysts (SACs) for NRR using density functional theory (DFT) calculations, focusing on single transition metal (TM) atoms (from Sc to Zn) supported on nitrogen-doped carbon materials (CN4). The results show that N2 molecules can be efficiently activated on TMN4 in an end-on configuration, followed by the distal associative pathway to achieve NRR ammonia synthesis. Moreover, the calculation results of NRR reaction activity for ten TMN4 SACs reveal that CrN4 SAC exhibits high NRR activity with a limiting potential of −0.70 eV and greater reaction selectivity over the competing hydrogen evolution reaction (HER). Multiple-level descriptors (ΔG*N2, Bader charge, charge differential density, ELF, pCOHP, and PDOS) reveal the origin of NRR activity from the perspectives of energy and electronic structure. The dissolution potential and AIMD dynamic calculation further verify its structural stability. This work provides theoretical guidance for the rational design, screening, and development of efficient SACs for the NRR process.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.