Zhuoyang Lou, Ling Du, Qi Liao, Ni Qin, Dinghua Bao
{"title":"Doping Mn ions at Co sites to improve resistive switching property of inverse spinel CoFe2O4 resistive random access memory devices","authors":"Zhuoyang Lou, Ling Du, Qi Liao, Ni Qin, Dinghua Bao","doi":"10.1016/j.apsusc.2025.162724","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Mn-doped CoFe<sub>2</sub>O<sub>4</sub> thin films were prepared by a sol–gel spin-coating method on Pt/Ti/SiO<sub>2</sub>/Si substrates for resistive memory application. It was confirmed that Mn ions were doped into Co ion sites. The Mn<sub>x</sub>Co<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> thin films with Pt top and bottom electrodes have good resistive switching (RS) properties, such as relatively low forming voltage distribution and narrow Set/Reset voltage distribution, good cycling durability and time retention, especially when Mn doping content x is 0.15. The conduction mechanisms are ohmic behavior in the low-resistance state and Schottky emission in the high-field region in the high-resistance state. The RS mechanism can be explained through formation and fracture of oxygen vacancy filaments. The saturation magnetization strength of manganese-cobalt ferrite films is increased after electro-forming process compared to the Fresh state, which is attributed to the change in oxygen vacancy concentration. This work demonstrates the potential of Mn-doped CoFe<sub>2</sub>O<sub>4</sub> films to be used in resistive random access memory.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"692 ","pages":"Article 162724"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225004386","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Mn-doped CoFe2O4 thin films were prepared by a sol–gel spin-coating method on Pt/Ti/SiO2/Si substrates for resistive memory application. It was confirmed that Mn ions were doped into Co ion sites. The MnxCo1-xFe2O4 thin films with Pt top and bottom electrodes have good resistive switching (RS) properties, such as relatively low forming voltage distribution and narrow Set/Reset voltage distribution, good cycling durability and time retention, especially when Mn doping content x is 0.15. The conduction mechanisms are ohmic behavior in the low-resistance state and Schottky emission in the high-field region in the high-resistance state. The RS mechanism can be explained through formation and fracture of oxygen vacancy filaments. The saturation magnetization strength of manganese-cobalt ferrite films is increased after electro-forming process compared to the Fresh state, which is attributed to the change in oxygen vacancy concentration. This work demonstrates the potential of Mn-doped CoFe2O4 films to be used in resistive random access memory.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.