{"title":"Insight into the role of Na distribution in Cu-SSZ-39 catalysts","authors":"Na Zhu, Lingyu Yu, Lisen Hou, Siying Wang","doi":"10.1016/j.jcat.2025.116032","DOIUrl":null,"url":null,"abstract":"Cu-SSZ-39 has garnered significant attention because of its outstanding NH<sub>3</sub>-SCR activity and hydrothermal stability. To facilitate commercial application of Cu-SSZ-39, it is crucial to streamline the synthesis process, adopt eco-friendly synthesis methods, enhance the catalytic performance, and explore the underlying catalytic mechanisms. Herein, ammonia exchange was skipped and Cu-SSZ-39 was directly synthesized via Cu-exchange of Na-SSZ-39. This approach yielded a Cu-SSZ-39 with superior catalytic performance compared to that prepared using the conventional NH<sub>4</sub>-SSZ-39. Comparative characterization of the Cu-SSZ-39 catalysts, derived from both Na-SSZ-39 and NH<sub>4</sub>-SSZ-39 exchanges demonstrated that the positioning of Na cations affected Cu distribution, and controlling Na distribution can enhance deNO<em><sub>x</sub></em> activity. It was also found that while cation locations did not alter the reaction mechanism of Cu-SSZ-39 at low temperature, they did increase the concentration of active NO<em><sub>x</sub></em> intermediates, thereby boosting catalytic performance. This study facilitates a more sustainable synthesis of Cu-SSZ-39 and provides deeper insights into how cations’ distribution in zeolites affects catalytic efficiency.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116032","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cu-SSZ-39 has garnered significant attention because of its outstanding NH3-SCR activity and hydrothermal stability. To facilitate commercial application of Cu-SSZ-39, it is crucial to streamline the synthesis process, adopt eco-friendly synthesis methods, enhance the catalytic performance, and explore the underlying catalytic mechanisms. Herein, ammonia exchange was skipped and Cu-SSZ-39 was directly synthesized via Cu-exchange of Na-SSZ-39. This approach yielded a Cu-SSZ-39 with superior catalytic performance compared to that prepared using the conventional NH4-SSZ-39. Comparative characterization of the Cu-SSZ-39 catalysts, derived from both Na-SSZ-39 and NH4-SSZ-39 exchanges demonstrated that the positioning of Na cations affected Cu distribution, and controlling Na distribution can enhance deNOx activity. It was also found that while cation locations did not alter the reaction mechanism of Cu-SSZ-39 at low temperature, they did increase the concentration of active NOx intermediates, thereby boosting catalytic performance. This study facilitates a more sustainable synthesis of Cu-SSZ-39 and provides deeper insights into how cations’ distribution in zeolites affects catalytic efficiency.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.