Hydrogen production from tea waste via fluidized bed gasification reactor of multi-ports injection: Experimental investigation

IF 9.1 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2025-02-18 DOI:10.1016/j.renene.2025.122713
Mohamad M. Alashmawy , Ahmed Elwardany , Hassan Shokry , Hamdy Hassan
{"title":"Hydrogen production from tea waste via fluidized bed gasification reactor of multi-ports injection: Experimental investigation","authors":"Mohamad M. Alashmawy ,&nbsp;Ahmed Elwardany ,&nbsp;Hassan Shokry ,&nbsp;Hamdy Hassan","doi":"10.1016/j.renene.2025.122713","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the gasification of tea waste biomass in a fluidized bed reactor, with a focus on optimizing syngas composition and energy content. A lab-scale hot flow fluidization bed reactor is designed, fabricated and installed. The impact of fluidization parameters, velocity and gasification temperature on the quality of syngas products is investigated. The effect of these parameters on the CO and H<sub>2</sub> percentages and calorific value of the produced syngas is studied. The results show that increasing air injection velocity enhances carbon monoxide (CO) production and reduces carbon dioxide (CO<sub>2</sub>) levels, with an optimal air injection velocity of 15 m/s for maximizing syngas calorific value. Furthermore, a gasification temperature of around 400 °C is found to be optimal for producing syngas with high calorific value, balancing CO and hydrogen (H<sub>2</sub>) production while minimizing CO<sub>2</sub>. A higher CO/CO<sub>2</sub> ratio is closely linked to increased syngas energy content, while the methane to hydrogen ratio also influences calorific value, though its impact is less predictable.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122713"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125003751","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the gasification of tea waste biomass in a fluidized bed reactor, with a focus on optimizing syngas composition and energy content. A lab-scale hot flow fluidization bed reactor is designed, fabricated and installed. The impact of fluidization parameters, velocity and gasification temperature on the quality of syngas products is investigated. The effect of these parameters on the CO and H2 percentages and calorific value of the produced syngas is studied. The results show that increasing air injection velocity enhances carbon monoxide (CO) production and reduces carbon dioxide (CO2) levels, with an optimal air injection velocity of 15 m/s for maximizing syngas calorific value. Furthermore, a gasification temperature of around 400 °C is found to be optimal for producing syngas with high calorific value, balancing CO and hydrogen (H2) production while minimizing CO2. A higher CO/CO2 ratio is closely linked to increased syngas energy content, while the methane to hydrogen ratio also influences calorific value, though its impact is less predictable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔喷射流化床气化反应器制氢茶叶废弃物的实验研究
本文研究了茶叶废生物质在流化床反应器中的气化,重点研究了合成气组成和能量含量的优化。设计、制作并安装了实验室规模的热流流化床反应器。研究了流化参数、气化速度和气化温度对合成气产品质量的影响。研究了这些参数对合成气CO、H2含量和热值的影响。结果表明,提高空气喷射速度可提高一氧化碳(CO)产量,降低二氧化碳(CO2)水平,最佳空气喷射速度为15 m/s,可使合成气热值最大化。此外,400°C左右的气化温度被发现是生产高热值合成气的最佳温度,平衡CO和氢气(H2)的产生,同时最大限度地减少二氧化碳。较高的CO/CO2比率与合成气能量含量的增加密切相关,而甲烷与氢的比率也影响热值,尽管其影响难以预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Study on a novel phase-change wood roof integrated with diurnal photovoltaic conversion and nocturnal sky radiative cooling Hybrid GA-PSO-optimized neural network for biogas production: Comparative evaluation of metaheuristic algorithms Evaluating net-zero energy buildings and their grid interaction: A comprehensive framework for operational phase and a Nordic case study Editorial Board Dynamic heat extraction and development optimization of enhanced geothermal system based on forward simulation and data-driven methods-A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1