E. Navarrete Ramos , J. Duarte-Campderros , M. Fernández , G. Gómez , J. González , S. Hidalgo , R. Jaramillo , P. Martínez Ruiz del Árbol , M. Moll , C. Quintana , A.K. Sikdar , I. Vila , J. Villegas
{"title":"Impact of neutron irradiation on LGADs with a carbon-enriched shallow multiplication layer: Degradation of timing performance and gain","authors":"E. Navarrete Ramos , J. Duarte-Campderros , M. Fernández , G. Gómez , J. González , S. Hidalgo , R. Jaramillo , P. Martínez Ruiz del Árbol , M. Moll , C. Quintana , A.K. Sikdar , I. Vila , J. Villegas","doi":"10.1016/j.nima.2025.170309","DOIUrl":null,"url":null,"abstract":"<div><div>In this radiation tolerance study, Low Gain Avalanche Detectors (LGADs) with a carbon-enriched broad and shallow multiplication layer were examined in comparison to identical non-carbonated LGADs. Manufactured at IMB-CNM, the sensors underwent neutron irradiation at the TRIGA reactor in Ljubljana, reaching a fluence of 1.5<!--> <!-->×<!--> <!-->10 <sup>15</sup>n<sub>eq</sub>cm<sup>−2</sup>. The results revealed a smaller deactivation of boron and improved resistance to radiation in carbonated LGADs. The study demonstrated the potential benefits of carbon enrichment in mitigating radiation damage effects, particularly the acceptor removal mechanism, reducing the acceptor removal constant by more than a factor of two. Additionally, time resolution and collected charge degradation due to irradiation were observed, with carbonated samples exhibiting better radiation tolerance. A noise analysis focused on baseline noise and spurious pulses showed the presence of thermal-generated dark counts attributed to a too narrow distance between the gain layer end and the p-stop implant at the periphery of the pad for the characterized LGAD design; however, without significant impact of operation performance.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1074 ","pages":"Article 170309"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016890022500110X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In this radiation tolerance study, Low Gain Avalanche Detectors (LGADs) with a carbon-enriched broad and shallow multiplication layer were examined in comparison to identical non-carbonated LGADs. Manufactured at IMB-CNM, the sensors underwent neutron irradiation at the TRIGA reactor in Ljubljana, reaching a fluence of 1.5 × 10 15neqcm−2. The results revealed a smaller deactivation of boron and improved resistance to radiation in carbonated LGADs. The study demonstrated the potential benefits of carbon enrichment in mitigating radiation damage effects, particularly the acceptor removal mechanism, reducing the acceptor removal constant by more than a factor of two. Additionally, time resolution and collected charge degradation due to irradiation were observed, with carbonated samples exhibiting better radiation tolerance. A noise analysis focused on baseline noise and spurious pulses showed the presence of thermal-generated dark counts attributed to a too narrow distance between the gain layer end and the p-stop implant at the periphery of the pad for the characterized LGAD design; however, without significant impact of operation performance.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.