Benzoic acid-functionalized bismuth nanowires: Synthesis, characterization, and catalytic role in hydrogen generation via sodium borohydride methanolysis

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2025-02-20 DOI:10.1016/j.fuel.2025.134685
Bassam A. Najri , Derya Yildiz , Arif Kivrak , Hilal Kivrak
{"title":"Benzoic acid-functionalized bismuth nanowires: Synthesis, characterization, and catalytic role in hydrogen generation via sodium borohydride methanolysis","authors":"Bassam A. Najri ,&nbsp;Derya Yildiz ,&nbsp;Arif Kivrak ,&nbsp;Hilal Kivrak","doi":"10.1016/j.fuel.2025.134685","DOIUrl":null,"url":null,"abstract":"<div><div>Benzoic acid-functionalized bismuth nanowires (BzOH-Bi NWs) were synthesized using a solvothermal chemical reduction method, where benzoic acid (BzOH) reacted with bismuth nitrate pentahydrate (Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O) in dimethylformamide (DMF) at 110 °C. In this approach, benzoic acid served a dual role: it acted as a reducing agent, converting Bi<sup>3+</sup> ions to metallic Bi⁰, and as a stabilizing or capping agent, preventing the agglomeration of the nanowires. The resulting BzOH-Bi NWs were characterized using several techniques: X-ray diffraction (XRD) to determine their crystal structures, Fourier-transform infrared spectroscopy (FTIR) to identify molecular bonds and functional groups, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX) to assess elemental composition and morphology, and X-ray photoelectron spectroscopy (XPS) to investigate their chemical oxidation states. These BzOH-Bi NWs were then tested as catalysts in the sodium borohydride (NaBH<sub>4</sub>) methanolysis reaction for hydrogen production. The BzOH-Bi NWs exhibited exceptional catalytic activity, achieving a hydrogen production rate (HPR) of 42.32 L/min.g<sub>catalyst</sub> when using 5 mg of BzOH-Bi NWs, 125 mg of NaBH<sub>4</sub>, and 4 mL of methanol at 30 °C. The activation energy of the reaction was calculated to be 18.6 kJ/mol using the Arrhenius equation. Furthermore, the catalysts demonstrated excellent reusability, maintaining high performance over 5 cycles, highlighting their potential as highly effective catalysts for hydrogen generation.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"390 ","pages":"Article 134685"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125004090","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Benzoic acid-functionalized bismuth nanowires (BzOH-Bi NWs) were synthesized using a solvothermal chemical reduction method, where benzoic acid (BzOH) reacted with bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) in dimethylformamide (DMF) at 110 °C. In this approach, benzoic acid served a dual role: it acted as a reducing agent, converting Bi3+ ions to metallic Bi⁰, and as a stabilizing or capping agent, preventing the agglomeration of the nanowires. The resulting BzOH-Bi NWs were characterized using several techniques: X-ray diffraction (XRD) to determine their crystal structures, Fourier-transform infrared spectroscopy (FTIR) to identify molecular bonds and functional groups, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX) to assess elemental composition and morphology, and X-ray photoelectron spectroscopy (XPS) to investigate their chemical oxidation states. These BzOH-Bi NWs were then tested as catalysts in the sodium borohydride (NaBH4) methanolysis reaction for hydrogen production. The BzOH-Bi NWs exhibited exceptional catalytic activity, achieving a hydrogen production rate (HPR) of 42.32 L/min.gcatalyst when using 5 mg of BzOH-Bi NWs, 125 mg of NaBH4, and 4 mL of methanol at 30 °C. The activation energy of the reaction was calculated to be 18.6 kJ/mol using the Arrhenius equation. Furthermore, the catalysts demonstrated excellent reusability, maintaining high performance over 5 cycles, highlighting their potential as highly effective catalysts for hydrogen generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Formation mechanism of liquid hydrocarbon products of type III kerogen: Insights from temperature-based semi-open pyrolysis Effects of wedge geometric parameters on flow characteristics of oblique detonation waves in a non-premixed mixture On the thermal degradation of palm frond and PLA 3251D biopolymer: TGA/FTIR experimentation, thermo-kinetics, and machine learning CDNN analysis Upgrading biogas to metgas by bi-reforming over Y2O3 modified Ni/h-BN nanocatalysts Ni- and Co-based catalysts via alloying Ni and Co with Sn species for selective conversion of vanillin through tailoring hydrogenation and deoxygenation activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1