P.C. Murphy , M. McEntee , M. Maher , M.F. Ryan , C. Harman , A. England , N. Moore
{"title":"Assessment of breast composition in MRI using artificial intelligence – A systematic review","authors":"P.C. Murphy , M. McEntee , M. Maher , M.F. Ryan , C. Harman , A. England , N. Moore","doi":"10.1016/j.radi.2025.102900","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Magnetic Resonance Imaging (MRI) performs a critical role in breast cancer diagnosis, especially for high-risk populations e.g. family history. MRI could take advantage of the implementation of artificial intelligence (AI). AI assessment of breast composition factors is less studied than those of lesion detection and classification. These factors are breast density, background parenchymal enhancement (BPE) and fibroglandular tissue (FGT), which are recognized breast cancer phenotypes.</div></div><div><h3>Methods</h3><div>Following PRISMA guidelines, the PROSPERO registered review examined the role of AI in assessing breast composition in MRI. A search of articles from Pubmed, Ovid, Embase, Web of Science, Cochrane, and Google scholar from 2010 to 2022 was conducted. Peer-reviewed, in-vivo studies were included based on defined search categories. Adapted QUADAS-2, CASP and Covidence tools were utilized for quality assessment.</div></div><div><h3>Results</h3><div>Seven studies were identified as being of sufficiently high quality. The studies showed that AI has the potential to provide a comparable level of accuracy against the relevant reference standard. There were limited performance results when delineating BPE and FGT BI-RADs categories. The review highlighted the variability in AI models while the range of statistical methods and small cohort sizes limited cross study compatibility.</div></div><div><h3>Conclusions</h3><div>AI has potential in assessing breast composition in MRI. However, variability in AI systems deployed and statistical measurements alongside limited validation across diverse populations remain an issue. AI systems may perform better with binary categorizations rather than the quaternary spectrum of BI-RADS.</div></div><div><h3>Implications for practice</h3><div>AI could assist in developing personalized breast composition assessments. Future developments could focus on better delineation of breast composition categories. AI models that have trained on more diverse and larger populations should result in more robust and effective clinical applications.</div></div>","PeriodicalId":47416,"journal":{"name":"Radiography","volume":"31 2","pages":"Article 102900"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1078817425000410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Magnetic Resonance Imaging (MRI) performs a critical role in breast cancer diagnosis, especially for high-risk populations e.g. family history. MRI could take advantage of the implementation of artificial intelligence (AI). AI assessment of breast composition factors is less studied than those of lesion detection and classification. These factors are breast density, background parenchymal enhancement (BPE) and fibroglandular tissue (FGT), which are recognized breast cancer phenotypes.
Methods
Following PRISMA guidelines, the PROSPERO registered review examined the role of AI in assessing breast composition in MRI. A search of articles from Pubmed, Ovid, Embase, Web of Science, Cochrane, and Google scholar from 2010 to 2022 was conducted. Peer-reviewed, in-vivo studies were included based on defined search categories. Adapted QUADAS-2, CASP and Covidence tools were utilized for quality assessment.
Results
Seven studies were identified as being of sufficiently high quality. The studies showed that AI has the potential to provide a comparable level of accuracy against the relevant reference standard. There were limited performance results when delineating BPE and FGT BI-RADs categories. The review highlighted the variability in AI models while the range of statistical methods and small cohort sizes limited cross study compatibility.
Conclusions
AI has potential in assessing breast composition in MRI. However, variability in AI systems deployed and statistical measurements alongside limited validation across diverse populations remain an issue. AI systems may perform better with binary categorizations rather than the quaternary spectrum of BI-RADS.
Implications for practice
AI could assist in developing personalized breast composition assessments. Future developments could focus on better delineation of breast composition categories. AI models that have trained on more diverse and larger populations should result in more robust and effective clinical applications.
RadiographyRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.70
自引率
34.60%
发文量
169
审稿时长
63 days
期刊介绍:
Radiography is an International, English language, peer-reviewed journal of diagnostic imaging and radiation therapy. Radiography is the official professional journal of the College of Radiographers and is published quarterly. Radiography aims to publish the highest quality material, both clinical and scientific, on all aspects of diagnostic imaging and radiation therapy and oncology.