An efficient energy conserving semi-Lagrangian kinetic scheme for the Vlasov-Maxwell system

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2025-02-17 DOI:10.1016/j.jcp.2025.113858
Hongtao Liu , Chang Lu , Guangqing Xia , Rony Keppens , Giovanni Lapenta
{"title":"An efficient energy conserving semi-Lagrangian kinetic scheme for the Vlasov-Maxwell system","authors":"Hongtao Liu ,&nbsp;Chang Lu ,&nbsp;Guangqing Xia ,&nbsp;Rony Keppens ,&nbsp;Giovanni Lapenta","doi":"10.1016/j.jcp.2025.113858","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop an efficient energy conserving semi-Lagrangian (ECSL) kinetic scheme for the Vlasov-Maxwell (VM) system. The proposed ECSL scheme is the first semi-Lagrangian VM solver to achieve unconditional stability with respect to the plasma period while conserving total energy, without requiring nonlinear iterations. The new method is built on three key components: an efficient field solver, an exact splitting (ES) method, and a conservative Semi-Lagrangian (CSL) scheme. Specifically, the efficient field solver is developed by semi-implicitly coupling the Ampère and Vlasov moment equations, removing the numerical constraints imposed by the plasma period. Furthermore, the ES method is applied to the Vlasov equation and integrated with an implicit Maxwell solver, ensuring energy conservation in rotational dynamics. The ES method reduces the multidimensional Vlasov equation to one-dimensional advections exactly in time, which are then solved with the CSL scheme to ensure mass conservation and remove CFL restrictions. These synergistic components enable the ECSL scheme to conserve both total energy and mass at the fully discrete level, regardless of spatial and temporal resolution. Finally, several numerical experiments are presented to demonstrate the accuracy, efficiency, and conservation properties of the proposed method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113858"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500141X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop an efficient energy conserving semi-Lagrangian (ECSL) kinetic scheme for the Vlasov-Maxwell (VM) system. The proposed ECSL scheme is the first semi-Lagrangian VM solver to achieve unconditional stability with respect to the plasma period while conserving total energy, without requiring nonlinear iterations. The new method is built on three key components: an efficient field solver, an exact splitting (ES) method, and a conservative Semi-Lagrangian (CSL) scheme. Specifically, the efficient field solver is developed by semi-implicitly coupling the Ampère and Vlasov moment equations, removing the numerical constraints imposed by the plasma period. Furthermore, the ES method is applied to the Vlasov equation and integrated with an implicit Maxwell solver, ensuring energy conservation in rotational dynamics. The ES method reduces the multidimensional Vlasov equation to one-dimensional advections exactly in time, which are then solved with the CSL scheme to ensure mass conservation and remove CFL restrictions. These synergistic components enable the ECSL scheme to conserve both total energy and mass at the fully discrete level, regardless of spatial and temporal resolution. Finally, several numerical experiments are presented to demonstrate the accuracy, efficiency, and conservation properties of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在本文中,我们为弗拉索夫-麦克斯韦(VM)系统开发了一种高效的能量守恒半拉格朗日(ECSL)动力学方案。所提出的 ECSL 方案是首个半拉格朗日 VM 求解器,可在节约总能量的同时实现等离子体周期的无条件稳定性,且无需非线性迭代。新方法由三个关键部分组成:高效场求解器、精确分裂(ES)方法和保守半拉格朗日(CSL)方案。具体来说,高效场求解器是通过半隐式耦合安培方程和弗拉索夫力矩方程开发的,消除了等离子体周期带来的数值限制。此外,ES 方法还应用于 Vlasov 方程,并与隐式麦克斯韦求解器集成,确保旋转动力学中的能量守恒。ES 方法将多维 Vlasov 方程精确地还原为一维平流,然后用 CSL 方案求解,以确保质量守恒并消除 CFL 限制。这些协同作用使 ECSL 方案能够在完全离散的水平上同时保持总能量和质量,而不受空间和时间分辨率的影响。最后,介绍了几个数值实验,以证明所提方法的准确性、效率和守恒特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
A class of high-order physics-preserving schemes for thermodynamically consistent model of incompressible and immiscible two-phase flow in porous media Editorial Board Learning and predicting dynamics of compositional multiphase mixtures using Graph Neural Networks Finite volume method for reduced multi-layer model of compressible Brinkman flow in high-dimensional fractured reservoirs with damage zones Local conservation of energy in fully implicit PIC algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1