Hydration and microstructural development of cement pastes incorporating diatomaceous earth, expanded perlite, and shape-stabilized phase change materials (SSPCMs)
Shafiq Ishak , Marcus Yio , Juhyuk Moon , Soumen Mandal , Sasui Sasui , Nor Hasanah Abdul Shukor Lim , Xiao-Yong Wang , Yi-Sheng Wang , Mohd Mustafa Al Bakri Abdullah , Poi Ngian Shek
{"title":"Hydration and microstructural development of cement pastes incorporating diatomaceous earth, expanded perlite, and shape-stabilized phase change materials (SSPCMs)","authors":"Shafiq Ishak , Marcus Yio , Juhyuk Moon , Soumen Mandal , Sasui Sasui , Nor Hasanah Abdul Shukor Lim , Xiao-Yong Wang , Yi-Sheng Wang , Mohd Mustafa Al Bakri Abdullah , Poi Ngian Shek","doi":"10.1016/j.conbuildmat.2025.140483","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of phase change materials (PCMs) into building structures offers a promising solution to enhance energy efficiency and improve thermal comfort. In this study, shape-stabilized PCMs (SSPCMs) consisting of capric acid (CA) as the PCMs were incorporated into cementitious binders using porous minerals of diatomaceous earth (DE) and expanded perlite (EP). Various analyses including isothermal calorimetry, XRD, TGA, SEM, and compressive strength tests were conducted to investigate the effects of DE, EP, and DE/EP PCMs on the hydration kinetics and microstructure of the cementitious system. Isothermal calorimetry results showed that the presence of PCMs has reduced the available space for the nucleation and growth of C-S-H gel. Furthermore, the presence of PCMs triggered the formation of a new phase of sodium acetate, which does not have notieacable impact on concrete properties. Rietveld refinement analysis of XRD data indicated that the presence of PCMs delayed the hydration of main clinker phases over an extended period. It was observed that the hydrophobic nature of CA, which repels water during the mixing process, resulted in an excess of water available for cement hydration. Despite these findings, this study demonstrated that with appropriate choice of supporting material and optimal SSPCMs content, the pozzolanic nature of SSPCMs can mitigate the reduction in strength observed in concrete samples containing PCMs. Overall, this research highlights the potential of integrating SSPCMs into cementitious binders for efficient energy storage, providing insights into optimizing their content and addressing associated challenges in concrete performance.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"468 ","pages":"Article 140483"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825006312","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of phase change materials (PCMs) into building structures offers a promising solution to enhance energy efficiency and improve thermal comfort. In this study, shape-stabilized PCMs (SSPCMs) consisting of capric acid (CA) as the PCMs were incorporated into cementitious binders using porous minerals of diatomaceous earth (DE) and expanded perlite (EP). Various analyses including isothermal calorimetry, XRD, TGA, SEM, and compressive strength tests were conducted to investigate the effects of DE, EP, and DE/EP PCMs on the hydration kinetics and microstructure of the cementitious system. Isothermal calorimetry results showed that the presence of PCMs has reduced the available space for the nucleation and growth of C-S-H gel. Furthermore, the presence of PCMs triggered the formation of a new phase of sodium acetate, which does not have notieacable impact on concrete properties. Rietveld refinement analysis of XRD data indicated that the presence of PCMs delayed the hydration of main clinker phases over an extended period. It was observed that the hydrophobic nature of CA, which repels water during the mixing process, resulted in an excess of water available for cement hydration. Despite these findings, this study demonstrated that with appropriate choice of supporting material and optimal SSPCMs content, the pozzolanic nature of SSPCMs can mitigate the reduction in strength observed in concrete samples containing PCMs. Overall, this research highlights the potential of integrating SSPCMs into cementitious binders for efficient energy storage, providing insights into optimizing their content and addressing associated challenges in concrete performance.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.