Enhanced thermal insulation performance of silica aerogel composites through infrared opacifier integration for high-temperature applications

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2025-02-17 DOI:10.1016/j.jcomc.2025.100573
Beatriz Merillas , Cláudio M.R. Almeida , Tomás Enrique Gómez Álvarez-Arenas , Miguel Ángel Rodríguez-Pérez , Luisa Durães
{"title":"Enhanced thermal insulation performance of silica aerogel composites through infrared opacifier integration for high-temperature applications","authors":"Beatriz Merillas ,&nbsp;Cláudio M.R. Almeida ,&nbsp;Tomás Enrique Gómez Álvarez-Arenas ,&nbsp;Miguel Ángel Rodríguez-Pérez ,&nbsp;Luisa Durães","doi":"10.1016/j.jcomc.2025.100573","DOIUrl":null,"url":null,"abstract":"<div><div>The inclusion of different fillers in silica aerogels reinforced by a reticulated polyurethane skeleton, allows for the development of a strategy to obtain composites with superior characteristics. Different fillers (TiO<sub>2</sub>, GO, SiC) and contents (0.2, 0.5 and 1.0 wt.%) were explored, analyzing their effects on the porous structures, mechanical stiffness and thermal conductivity of the composites. These exhibited low densities, reduced shrinkage, and high specific surface areas of approximately 550 m<sup>2</sup>/g. The incorporated fillers were homogeneously dispersed, leading to a general decrease in the mean pore size. Despite observing a slight reduction in the elastic modulus with respect to the non-doped composite, the benefits of this strategy are twofold; the composites can withstand strains above 80 % without breaking, significantly improving the mechanical stability when compared to non-reinforced silica aerogels, and while achieving high resilience. Additionally, enhanced thermal insulating performance was found for some materials. After analyzing the heat transfer contributions, the optimum particle contents for an improved thermal insulation were identified (1.0 wt.% TiO<sub>2</sub> and 0.2 wt.% SiC), leading to an effective reduction of the radiation term and reaching overall reductions of 10 and 6.5 % at 100 °C. Therefore, the silica aerogel-based composites herein produced represent a step forward in their usability and versatility for cutting-edge applications.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100573"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The inclusion of different fillers in silica aerogels reinforced by a reticulated polyurethane skeleton, allows for the development of a strategy to obtain composites with superior characteristics. Different fillers (TiO2, GO, SiC) and contents (0.2, 0.5 and 1.0 wt.%) were explored, analyzing their effects on the porous structures, mechanical stiffness and thermal conductivity of the composites. These exhibited low densities, reduced shrinkage, and high specific surface areas of approximately 550 m2/g. The incorporated fillers were homogeneously dispersed, leading to a general decrease in the mean pore size. Despite observing a slight reduction in the elastic modulus with respect to the non-doped composite, the benefits of this strategy are twofold; the composites can withstand strains above 80 % without breaking, significantly improving the mechanical stability when compared to non-reinforced silica aerogels, and while achieving high resilience. Additionally, enhanced thermal insulating performance was found for some materials. After analyzing the heat transfer contributions, the optimum particle contents for an improved thermal insulation were identified (1.0 wt.% TiO2 and 0.2 wt.% SiC), leading to an effective reduction of the radiation term and reaching overall reductions of 10 and 6.5 % at 100 °C. Therefore, the silica aerogel-based composites herein produced represent a step forward in their usability and versatility for cutting-edge applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在高温应用中集成红外增白剂提高二氧化硅气凝胶复合材料的隔热性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Sustainability of Urban Regions and Migration in Pakistan: A GIS Analysis
IF 0 International Journal of Economic and Environmental GeologyPub Date : 2021-11-16 DOI: 10.46660/ijeeg.vol12.iss3.2021.618
S. Alam, Munazah Nazeer, A. Fatima
Application of GIS in the Analysis of Urban Economic Migration
IF 0 SHS Web of ConferencesPub Date : 1900-01-01 DOI: 10.1051/shsconf/202215101022
Chen Yuan
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Addressing structural certification challenges with FEM analysis in electric seaplane CFRP wing Origami-inspired self-sensing foldable composite structures: Experiments and modeling Large-area high thermal conductivity graphite-carboxymethylcellulose film easily produced by mechanical exfoliation of natural graphite using a three-roll mill Impact of internal pressure control during manufacturing on residual stresses and safety performance of type 4 pressure vessels Mechanical performance of aluminum/copper/aluminum nanocomposite at different temperatures using molecular dynamics simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1