Improving trans-regional hydrological modelling by combining LSTM with big hydrological data

IF 4.7 2区 地球科学 Q1 WATER RESOURCES Journal of Hydrology-Regional Studies Pub Date : 2025-02-19 DOI:10.1016/j.ejrh.2025.102257
Senlin Tang , Fubao Sun , Qiang Zhang , Vijay P. Singh , Yao Feng
{"title":"Improving trans-regional hydrological modelling by combining LSTM with big hydrological data","authors":"Senlin Tang ,&nbsp;Fubao Sun ,&nbsp;Qiang Zhang ,&nbsp;Vijay P. Singh ,&nbsp;Yao Feng","doi":"10.1016/j.ejrh.2025.102257","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Lancang-Mekong River Basin (LMRB), Brazil.</div></div><div><h3>Study focus</h3><div>Streamflow prediction in ungauged basins is a significant challenge in hydrology. This study investigates the transferability of deep learning models for hydrological simulations in ungauged basins, focusing on how constraints like catchment attributes, meteorological forcing, and Global Hydrological Models (GHMs) improve model performance when transferring knowledge from gauged to ungauged basins. We applied the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS-BR) dataset alongside GHMs and deep learning techniques to simulate hydrological processes in the LMRB.</div></div><div><h3>New hydrological insights for the region</h3><div>The results demonstrate that a post-processing scheme combining deep learning, meteorological data, and GHMs significantly improves model accuracy, achieving a median Nash-Sutcliffe Efficiency (NSE) of 0.64, compared to 0.50 for the baseline Long Short-Term Memory (LSTM) model without GHMs. Key factors influencing model performance include catchment attributes, climate variations, and the length of the modelling series. A notable finding is the importance of catchment attributes in defining hydrological similarity, which enhances model migration between regions with differing data availability. Cross-regional migration was particularly successful when hydrological similarities between the Amazon Basin and LMRB were evaluated, achieving an NSE of 0.86 at the Pakse hydrological station. These insights provide a novel modelling framework for hydrological simulations in data-scarce regions, emphasizing the role of physical mechanisms and hydrological similarities in improving model transferability.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102257"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000813","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

Lancang-Mekong River Basin (LMRB), Brazil.

Study focus

Streamflow prediction in ungauged basins is a significant challenge in hydrology. This study investigates the transferability of deep learning models for hydrological simulations in ungauged basins, focusing on how constraints like catchment attributes, meteorological forcing, and Global Hydrological Models (GHMs) improve model performance when transferring knowledge from gauged to ungauged basins. We applied the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS-BR) dataset alongside GHMs and deep learning techniques to simulate hydrological processes in the LMRB.

New hydrological insights for the region

The results demonstrate that a post-processing scheme combining deep learning, meteorological data, and GHMs significantly improves model accuracy, achieving a median Nash-Sutcliffe Efficiency (NSE) of 0.64, compared to 0.50 for the baseline Long Short-Term Memory (LSTM) model without GHMs. Key factors influencing model performance include catchment attributes, climate variations, and the length of the modelling series. A notable finding is the importance of catchment attributes in defining hydrological similarity, which enhances model migration between regions with differing data availability. Cross-regional migration was particularly successful when hydrological similarities between the Amazon Basin and LMRB were evaluated, achieving an NSE of 0.86 at the Pakse hydrological station. These insights provide a novel modelling framework for hydrological simulations in data-scarce regions, emphasizing the role of physical mechanisms and hydrological similarities in improving model transferability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
期刊最新文献
Mass loss of Bayi Glacier in the Heihe River Basin revealed by ground-penetration radar measurements from 2006 to 2023 Multi-reservoirs joint flood control scheduling using a two-layer hedging robust optimization method under uncertain inflows Spatiotemporal evolution of droughts and floods in the Yellow River Basin: A novel approach combining CMADS-L evaluation, hydroclimatic zonation and CNN-LSTM prediction Multiobjective risk-based optimization for real-time interbasin water diversion under decomposed chance-constrained total water use Significant differences in terrestrial water storage estimated by four common methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1