Microbial inoculants drive disease suppression and rhizosphere modulation for effective management of pepper phytophthora blight

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2025-02-19 DOI:10.1016/j.apsoil.2025.105971
Muye Xiao , Xuchen Liu , Xiaozhong Wang , Wencai Lu , Tong Zhang , Yuheng Yang
{"title":"Microbial inoculants drive disease suppression and rhizosphere modulation for effective management of pepper phytophthora blight","authors":"Muye Xiao ,&nbsp;Xuchen Liu ,&nbsp;Xiaozhong Wang ,&nbsp;Wencai Lu ,&nbsp;Tong Zhang ,&nbsp;Yuheng Yang","doi":"10.1016/j.apsoil.2025.105971","DOIUrl":null,"url":null,"abstract":"<div><div>Peppers (<em>Capsicum annuum</em> L.) are globally important vegetable crops, yet their production is often compromised by diseases like pepper Phytophthora blight (PPB). Microbial inoculants offer a promising strategy to enhance plant growth and prevent pathogen invasion by establishing diverse core microbial communities in the rhizosphere. This study investigated the efficacy of microbial inoculants, particularly <em>Bacillus subtilis</em> and <em>Trichoderma harzianum</em>, in controlling PPB and enhancing pepper growth under both greenhouse and field conditions. Both individual and combined applications of <em>B. subtilis</em> and <em>T. harzianum</em> significantly suppressed PPB and improved pepper yield. Furthermore, we assessed how these inoculants influenced soil microbial diversity and community structure, identifying key components of the soil microbiome that contribute to disease suppression. The observed suppression of pathogens and promotion of growth were primarily associated with the recruitment of beneficial microbial groups, such as <em>Agromyces</em>, <em>Nocardiopsis</em>, <em>MND1</em>, <em>Gaiella</em>, <em>Iamia</em>, <em>Massilia</em>, <em>Micromonospora</em>, <em>Fusarium</em>, <em>Gibberella</em>, and <em>Gibellulopsis</em>. These findings suggest that microbial inoculants, particularly in combination, can effectively manage PPB and enhance crop productivity through modulation of the rhizosphere microbiome. This study provides valuable insights into the application of microbial inoculants for sustainable pepper production and disease management.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"208 ","pages":"Article 105971"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092913932500109X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Peppers (Capsicum annuum L.) are globally important vegetable crops, yet their production is often compromised by diseases like pepper Phytophthora blight (PPB). Microbial inoculants offer a promising strategy to enhance plant growth and prevent pathogen invasion by establishing diverse core microbial communities in the rhizosphere. This study investigated the efficacy of microbial inoculants, particularly Bacillus subtilis and Trichoderma harzianum, in controlling PPB and enhancing pepper growth under both greenhouse and field conditions. Both individual and combined applications of B. subtilis and T. harzianum significantly suppressed PPB and improved pepper yield. Furthermore, we assessed how these inoculants influenced soil microbial diversity and community structure, identifying key components of the soil microbiome that contribute to disease suppression. The observed suppression of pathogens and promotion of growth were primarily associated with the recruitment of beneficial microbial groups, such as Agromyces, Nocardiopsis, MND1, Gaiella, Iamia, Massilia, Micromonospora, Fusarium, Gibberella, and Gibellulopsis. These findings suggest that microbial inoculants, particularly in combination, can effectively manage PPB and enhance crop productivity through modulation of the rhizosphere microbiome. This study provides valuable insights into the application of microbial inoculants for sustainable pepper production and disease management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Litter removal and nitrogen deposition alter soil microbial community composition and diversity in a typical rubber (Hevea brasiliensis) plantation of Hainan, China Soil fauna in agroforestry contributes to the suppressiveness to plant-parasitic nematodes: A case study in a Mediterranean area Influence of recycled organic waste amendments on carbon pools, greenhouse gas emissions, and nematode indicators of soil health Spatial dynamics of soil algae: Insights into abundance, community structure, and ecological roles in mixed biocrusts across China Soil-dependent fate of Klebsiella pneumoniae and Listeria monocytogenes after incorporation of digestates in soil microcosms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1