Jiawen Ji , Yan Lu , Yiquan Zhang, Xi Luo, Miaomiao Zhang, Xue Li, Renfei Lu
{"title":"Exposure to low concentrations of ethanol alters global gene expression patterns in Vibrio parahaemolyticus","authors":"Jiawen Ji , Yan Lu , Yiquan Zhang, Xi Luo, Miaomiao Zhang, Xue Li, Renfei Lu","doi":"10.1016/j.micpath.2025.107383","DOIUrl":null,"url":null,"abstract":"<div><div><em>Vibrio parahaemolyticus</em> is a foodborne pathogen commonly associated with seafood worldwide. Ethanol is widely used as a disinfectant and preservative in the food industry. Low concentrations of ethanol can inhibit the growth of <em>V</em>. <em>parahaemolyticus</em> and alter its protein expression profile and stress resistance. However, it remains unknown how ethanol exposure affects the behavior and gene expression of <em>V</em>. <em>parahaemolyticus</em>. In this study, RNA sequencing revealed differential expression of 1020 genes in response to 1.5 % (v/v) ethanol, including biofilm-associated genes, c-di-GMP metabolism-related genes, major virulence genes, putative regulatory genes, and Hsp-like protein encoding genes. Specifically, genes involved in exopolysaccharides, type VI secretion system 1, thermostable direct hemolysin, and type III secretion system 2 were upregulated upon exposure to 1.5 % ethanol. Additionally, the data also suggest a significant decrease in swimming and swarming motility, as well as a notable increase in biofilm formation, under 1.5 % ethanol stress. This study enhances our understanding of how <em>V. parahaemolyticus</em> adapts its behavior and gene expression to low concentrations of ethanol.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"201 ","pages":"Article 107383"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401025001081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vibrio parahaemolyticus is a foodborne pathogen commonly associated with seafood worldwide. Ethanol is widely used as a disinfectant and preservative in the food industry. Low concentrations of ethanol can inhibit the growth of V. parahaemolyticus and alter its protein expression profile and stress resistance. However, it remains unknown how ethanol exposure affects the behavior and gene expression of V. parahaemolyticus. In this study, RNA sequencing revealed differential expression of 1020 genes in response to 1.5 % (v/v) ethanol, including biofilm-associated genes, c-di-GMP metabolism-related genes, major virulence genes, putative regulatory genes, and Hsp-like protein encoding genes. Specifically, genes involved in exopolysaccharides, type VI secretion system 1, thermostable direct hemolysin, and type III secretion system 2 were upregulated upon exposure to 1.5 % ethanol. Additionally, the data also suggest a significant decrease in swimming and swarming motility, as well as a notable increase in biofilm formation, under 1.5 % ethanol stress. This study enhances our understanding of how V. parahaemolyticus adapts its behavior and gene expression to low concentrations of ethanol.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)