{"title":"Revisiting multiple trapping and release charge transport in amorphous semiconductors exemplified by hydrogenated amorphous silicon","authors":"Yuezhou Luo, Andrew John Flewitt","doi":"10.1016/j.jnoncrysol.2025.123436","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple trapping and release (MTR) is a typical charge transport mechanism associated with localized states in technologically important disordered semiconductors such as hydrogenated amorphous silicon (<em>a</em>-Si:H) and many amorphous oxides. However, till now the analysis of MTR has been built on an “abrupt” mobility edge model. Using electron transport as an example, the abrupt mobility edge model assumes that: (i) states above the conduction band (CB) mobility edge (<em>E<sub>C</sub></em>) are extended and any of them is omnipresent in space, whereas states below <em>E<sub>C</sub></em> are localized and they exist in the energy-space diagram as pointlike sites; (ii) all states are evenly distributed in space. The prequel to this paper [Y. Luo and A. Flewitt, Phys. Rev. B <strong>109</strong>, 104203 (2024)] demonstrates that neither of these simplifications is valid. Hence, this paper reinvestigates MTR transport. Through a probabilistic analysis of the microscopic charge transport details, this paper rigorously achieves two critical conclusions that challenge previous beliefs. First, the mobility edge, which is characterizable through activation energy measurement of conductivity, is an effective quantity associated with carrier relaxation dynamics; it does not demarcate the extended states and localized states of an amorphous semiconductor. Second, the extended-state mobility, which is extractable from time-of-flight experiments, is also an effective quantity that is higher than the mobility of free carriers in the material.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"654 ","pages":"Article 123436"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309325000523","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple trapping and release (MTR) is a typical charge transport mechanism associated with localized states in technologically important disordered semiconductors such as hydrogenated amorphous silicon (a-Si:H) and many amorphous oxides. However, till now the analysis of MTR has been built on an “abrupt” mobility edge model. Using electron transport as an example, the abrupt mobility edge model assumes that: (i) states above the conduction band (CB) mobility edge (EC) are extended and any of them is omnipresent in space, whereas states below EC are localized and they exist in the energy-space diagram as pointlike sites; (ii) all states are evenly distributed in space. The prequel to this paper [Y. Luo and A. Flewitt, Phys. Rev. B 109, 104203 (2024)] demonstrates that neither of these simplifications is valid. Hence, this paper reinvestigates MTR transport. Through a probabilistic analysis of the microscopic charge transport details, this paper rigorously achieves two critical conclusions that challenge previous beliefs. First, the mobility edge, which is characterizable through activation energy measurement of conductivity, is an effective quantity associated with carrier relaxation dynamics; it does not demarcate the extended states and localized states of an amorphous semiconductor. Second, the extended-state mobility, which is extractable from time-of-flight experiments, is also an effective quantity that is higher than the mobility of free carriers in the material.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.