{"title":"SDCBM: A Secure Data Collection Model With Blockchain and Machine Learning Integration for Wireless Sensor Networks","authors":"P. V. Pravija Raj;Ahmed M. Khedr","doi":"10.1109/JSEN.2025.3526807","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) often struggle with managing extensive data volumes, given their resource-constrained nature. Deployed in unattended areas, they face significant security risks and attacks. This study introduces the secure data collection model with blockchain and machine learning integration for WSNs (SDCBM), designed to identify intrusions and ensure secure data collection and storage for WSN applications. SDCBM employs an extreme learning machine (ELM) model, a fast single-layer feedforward neural network (NN), and integrates techniques for balancing the data distribution and selecting relevant features to enhance real-time detection of malicious attacks. Data is preprocessed and balanced utilizing the synthetic minority oversampling technique (SMOTE) and Tomek-Links combination method. To enhance the feature selection process, the Harris Hawk optimization (HHO)-based method is proposed. The blockchain module manages network node registration, authentication, node revocation, and secure storage of data hashes and node credentials. Simulation results demonstrate the efficacy of the proposed SDCBM method in detecting malicious nodes and enhancing secure data collection, thereby strengthening the security of WSNs.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"7457-7466"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10839288/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) often struggle with managing extensive data volumes, given their resource-constrained nature. Deployed in unattended areas, they face significant security risks and attacks. This study introduces the secure data collection model with blockchain and machine learning integration for WSNs (SDCBM), designed to identify intrusions and ensure secure data collection and storage for WSN applications. SDCBM employs an extreme learning machine (ELM) model, a fast single-layer feedforward neural network (NN), and integrates techniques for balancing the data distribution and selecting relevant features to enhance real-time detection of malicious attacks. Data is preprocessed and balanced utilizing the synthetic minority oversampling technique (SMOTE) and Tomek-Links combination method. To enhance the feature selection process, the Harris Hawk optimization (HHO)-based method is proposed. The blockchain module manages network node registration, authentication, node revocation, and secure storage of data hashes and node credentials. Simulation results demonstrate the efficacy of the proposed SDCBM method in detecting malicious nodes and enhancing secure data collection, thereby strengthening the security of WSNs.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice