Udara S. Somarathna;Behnam Garakani;Darshana L. Weerawarne;Mohammed Alhendi;Mark D. Poliks;Matthew Misner;Andrew Burns;Gurvinder S. Khinda;Azar Alizadeh
{"title":"Reliability of Screen-Printed Water-Based Carbon Resistors for Sustainable Wearable Sensors","authors":"Udara S. Somarathna;Behnam Garakani;Darshana L. Weerawarne;Mohammed Alhendi;Mark D. Poliks;Matthew Misner;Andrew Burns;Gurvinder S. Khinda;Azar Alizadeh","doi":"10.1109/JSEN.2024.3525055","DOIUrl":null,"url":null,"abstract":"Water-based carbon inks provide a cost-effective and sustainable alternative to organic-solvent-based metal conductive inks, making them attractive for wearable sensor applications. However, poor adhesion on nonporous polymer substrates and susceptibility to temperature and humidity fluctuations raise concerns about printability and reliability, hindering their widespread commercial adoption. This study focuses on screen-printing defect-free multilayer structures on flexible and stretchable polymer substrates using a commercial water-based conductive carbon black (CB) ink and evaluating their reliability. A robust printing process was developed by modifying the fabrication flow, optimizing printing parameters, and maintaining atmospheric relative humidity (RH) between 70% and 75%. Multilayer sweat-rate electrodes (SREs) with conductors and resistors were successfully screen-printed using a solvent-based silver ink and a water-based CB ink, respectively, and their environmental and mechanical reliability was comprehensively investigated. The water-based carbon resistors printed on polyimide substrate demonstrated promising results. Ambient-dried resistors on polyimide exhibited satisfactory electrical performance and reliability, while thermal curing further reduced their electrical resistance by 18% without compromising reliability. Moreover, these resistors demonstrated excellent environmental and mechanical reliability by withstanding thermal exposure at 125 ° C, RH of 15%, and 500 tensile bending cycles at a 1-cm bend radius, suggesting their suitability for wearable sensors. Failure analysis revealed the development of crater-like morphological structures during the drying process, which later acted as stress concentration points. Resistors printed on polyester, high-density polyethylene, and thermoplastic polyurethane (TPU) substrates failed due to cracking, delamination, ink-to-ink interactions, or out-of-plane deformation. Cracking and delamination patterns provided useful insights into failure mechanisms.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"6449-6463"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10836175/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Water-based carbon inks provide a cost-effective and sustainable alternative to organic-solvent-based metal conductive inks, making them attractive for wearable sensor applications. However, poor adhesion on nonporous polymer substrates and susceptibility to temperature and humidity fluctuations raise concerns about printability and reliability, hindering their widespread commercial adoption. This study focuses on screen-printing defect-free multilayer structures on flexible and stretchable polymer substrates using a commercial water-based conductive carbon black (CB) ink and evaluating their reliability. A robust printing process was developed by modifying the fabrication flow, optimizing printing parameters, and maintaining atmospheric relative humidity (RH) between 70% and 75%. Multilayer sweat-rate electrodes (SREs) with conductors and resistors were successfully screen-printed using a solvent-based silver ink and a water-based CB ink, respectively, and their environmental and mechanical reliability was comprehensively investigated. The water-based carbon resistors printed on polyimide substrate demonstrated promising results. Ambient-dried resistors on polyimide exhibited satisfactory electrical performance and reliability, while thermal curing further reduced their electrical resistance by 18% without compromising reliability. Moreover, these resistors demonstrated excellent environmental and mechanical reliability by withstanding thermal exposure at 125 ° C, RH of 15%, and 500 tensile bending cycles at a 1-cm bend radius, suggesting their suitability for wearable sensors. Failure analysis revealed the development of crater-like morphological structures during the drying process, which later acted as stress concentration points. Resistors printed on polyester, high-density polyethylene, and thermoplastic polyurethane (TPU) substrates failed due to cracking, delamination, ink-to-ink interactions, or out-of-plane deformation. Cracking and delamination patterns provided useful insights into failure mechanisms.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice