Comprehensive study on photovoltaic cell's generation and factors affecting its performance: A Review

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2025-02-19 DOI:10.1007/s40243-024-00292-5
Prabhakar Sharma, Ritesh Kumar Mishra
{"title":"Comprehensive study on photovoltaic cell's generation and factors affecting its performance: A Review","authors":"Prabhakar Sharma,&nbsp;Ritesh Kumar Mishra","doi":"10.1007/s40243-024-00292-5","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of fossil fuels for power generation results in the production of a greater quantity of pollutants and greenhouse gases, which exerts detrimental impacts on the ecosystem. A range of solar energy technologies can be employed to address forthcoming energy demands, concurrently mitigating pollution and protecting the world from global threats. This study critically reviewed all four generations of photovoltaic (PV) solar cells, focusing on fundamental concepts, material used, performance, operational principles, and cooling systems, along with their respective advantages and disadvantages. The manuscript analyzes various materials, including their performance, physical properties (electronic and optical), biodegradability, availability, cost, temperature stability, degradation rate, and other parameters. The sensible engineering of effective solar devices made of cutting -edge materials along with nanostructured ternary metal sulphides, and three-dimensional graphene are also briefly discussed which are more versatile, stable, thin and light weight with high performance as compare to third generation solar cells. The impact of material alterations is delineated in PV, where the efficiency of solar cell technology has improved from 4% to 47.1%. Further the research article deals with different internal and external stress factors affecting the solar PV module performance.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00292-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00292-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of fossil fuels for power generation results in the production of a greater quantity of pollutants and greenhouse gases, which exerts detrimental impacts on the ecosystem. A range of solar energy technologies can be employed to address forthcoming energy demands, concurrently mitigating pollution and protecting the world from global threats. This study critically reviewed all four generations of photovoltaic (PV) solar cells, focusing on fundamental concepts, material used, performance, operational principles, and cooling systems, along with their respective advantages and disadvantages. The manuscript analyzes various materials, including their performance, physical properties (electronic and optical), biodegradability, availability, cost, temperature stability, degradation rate, and other parameters. The sensible engineering of effective solar devices made of cutting -edge materials along with nanostructured ternary metal sulphides, and three-dimensional graphene are also briefly discussed which are more versatile, stable, thin and light weight with high performance as compare to third generation solar cells. The impact of material alterations is delineated in PV, where the efficiency of solar cell technology has improved from 4% to 47.1%. Further the research article deals with different internal and external stress factors affecting the solar PV module performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏电池的产生及其性能影响因素的综合研究综述
利用化石燃料发电会产生更多的污染物和温室气体,对生态系统产生不利影响。一系列太阳能技术可用于解决即将到来的能源需求,同时减轻污染并保护世界免受全球威胁。本研究回顾了四代光伏(PV)太阳能电池的基本概念、使用的材料、性能、工作原理和冷却系统,以及它们各自的优缺点。该手稿分析了各种材料,包括它们的性能、物理性质(电子和光学)、可生物降解性、可用性、成本、温度稳定性、降解率和其他参数。本文还简要讨论了由纳米结构三元金属硫化物和三维石墨烯等尖端材料制成的高效太阳能器件的合理工程设计,与第三代太阳能电池相比,它们具有更多功能、更稳定、更薄、更轻、更高性能的特点。材料变化的影响在PV中被描述,其中太阳能电池技术的效率从4%提高到47.1%。进一步研究了影响太阳能光伏组件性能的不同内外部应力因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Recent progress in post-modified biochar-based material for supercapacitor applications: a review Strategic integration of charge transport layers in novel Sr3AsI3 perovskite solar cells for enhanced photovoltaic performance Design and simulation of interface-tuned Cu\(_{2}\)MgSnS\(_{4}\) solar cells using transition metal chalcogenides Fabrication of titanium dioxide nanoparticle-doped polymer electrolytes for dye-sensitized solar cell modules: self-powered internet of things applications Exploring the photovoltaic potential of CsSbCl4 Dion Jacobson Perovskites through first-principle calculations and SCAPS simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1