{"title":"Primordial black holes from the ultraslow-roll phase in the inflaton–curvaton mixed field inflation","authors":"Bing-Yu Su, Nan Li, Lei Feng","doi":"10.1140/epjc/s10052-025-13921-8","DOIUrl":null,"url":null,"abstract":"<div><p>Primordial black holes (PBHs) are a promising candidate for dark matter, as they can form in the very early universe without invoking new particle physics. This work explores PBH formation within a curvaton scenario featuring an ultraslow-roll (USR) phase. An inflaton–curvaton mixed field model is presented, where the inflaton drives early inflation and then transits into the USR phase, amplifying the small-scale curvature perturbation. During inflation, the curvaton generates entropy perturbation, which later converts into curvature perturbation after the curvaton decays in the radiation-dominated era. Using the <span>\\(\\delta N\\)</span> formalism, we compute the power spectrum of the total primordial curvature perturbation and analyze the relevant non-Gaussianity. Our results show that adding a curvaton field not only has a significant impact on primordial non-Gaussianity, but also introduces more complex inflationary dynamics, even saving the inflaton potentials that generate too low scalar spectral indices. Our model can produce PBHs with mass around <span>\\(10^{-14}\\,M_\\odot \\)</span> that account for all dark matter, while remaining consistent with current observational constraints.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13921-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13921-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Primordial black holes (PBHs) are a promising candidate for dark matter, as they can form in the very early universe without invoking new particle physics. This work explores PBH formation within a curvaton scenario featuring an ultraslow-roll (USR) phase. An inflaton–curvaton mixed field model is presented, where the inflaton drives early inflation and then transits into the USR phase, amplifying the small-scale curvature perturbation. During inflation, the curvaton generates entropy perturbation, which later converts into curvature perturbation after the curvaton decays in the radiation-dominated era. Using the \(\delta N\) formalism, we compute the power spectrum of the total primordial curvature perturbation and analyze the relevant non-Gaussianity. Our results show that adding a curvaton field not only has a significant impact on primordial non-Gaussianity, but also introduces more complex inflationary dynamics, even saving the inflaton potentials that generate too low scalar spectral indices. Our model can produce PBHs with mass around \(10^{-14}\,M_\odot \) that account for all dark matter, while remaining consistent with current observational constraints.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.