Enhancing electrochemical xanthine detection: A two-step incubation strategy to minimize interference from ascorbic acid

IF 1.7 4区 化学 Bulletin of the Korean Chemical Society Pub Date : 2025-01-09 DOI:10.1002/bkcs.12936
Taeyeon Yoo, Seonhwa Park, Hyoeun Lee, Subin Park, Youngsuk Kim, Haesik Yang
{"title":"Enhancing electrochemical xanthine detection: A two-step incubation strategy to minimize interference from ascorbic acid","authors":"Taeyeon Yoo,&nbsp;Seonhwa Park,&nbsp;Hyoeun Lee,&nbsp;Subin Park,&nbsp;Youngsuk Kim,&nbsp;Haesik Yang","doi":"10.1002/bkcs.12936","DOIUrl":null,"url":null,"abstract":"<p>Enzyme-based biosensors with mediated electrochemical detection offer a straightforward and cost-effective approach for detecting xanthine. However, electro-active interfering species such as ascorbic acid (AA) complicate the achievement of sensitive and selective detection in biological fluids. Direct and mediated oxidation of AA elevates electrochemical background levels. While ascorbate oxidase (AOx) is employed to oxidize AA into an electro-inactive product, incomplete removal of AA allows it to reduce the electron mediator, resulting in still considerable background levels. Additionally, excess AOx can oxidize the signaling species, the reduced form of the electron mediator, albeit slowly, leading to decreased signal levels. To address these challenges, a two-step incubation process and the use of appropriate AOx concentration are implemented. Once AA is fully oxidized by AOx, an electron mediator is added to the solution. To enhance the electrochemical signal-to-background ratio, an optimal pairing of a xanthine-oxidizing enzyme and an electron mediator is selected from two xanthine-oxidizing enzymes [xanthine dehydrogenase (XDH) and xanthine oxidase] and three electron mediators [Os(bpy)<sub>2</sub>Cl<sub>2</sub><sup>+</sup>, Ru(NH<sub>3</sub>)<sub>6</sub><sup>3+</sup>, and Fe(CN)<sub>6</sub><sup>3−</sup>]. The combination of XDH and Os(bpy)<sub>2</sub>Cl<sub>2</sub><sup>+</sup> provides high signal and low background levels. When these conditions are applied to xanthine detection in artificial serum, a detection limit of approximately 500 nM is achieved, making it applicable in various clinical and research fields.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"46 2","pages":"156-163"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12936","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enzyme-based biosensors with mediated electrochemical detection offer a straightforward and cost-effective approach for detecting xanthine. However, electro-active interfering species such as ascorbic acid (AA) complicate the achievement of sensitive and selective detection in biological fluids. Direct and mediated oxidation of AA elevates electrochemical background levels. While ascorbate oxidase (AOx) is employed to oxidize AA into an electro-inactive product, incomplete removal of AA allows it to reduce the electron mediator, resulting in still considerable background levels. Additionally, excess AOx can oxidize the signaling species, the reduced form of the electron mediator, albeit slowly, leading to decreased signal levels. To address these challenges, a two-step incubation process and the use of appropriate AOx concentration are implemented. Once AA is fully oxidized by AOx, an electron mediator is added to the solution. To enhance the electrochemical signal-to-background ratio, an optimal pairing of a xanthine-oxidizing enzyme and an electron mediator is selected from two xanthine-oxidizing enzymes [xanthine dehydrogenase (XDH) and xanthine oxidase] and three electron mediators [Os(bpy)2Cl2+, Ru(NH3)63+, and Fe(CN)63−]. The combination of XDH and Os(bpy)2Cl2+ provides high signal and low background levels. When these conditions are applied to xanthine detection in artificial serum, a detection limit of approximately 500 nM is achieved, making it applicable in various clinical and research fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of the Korean Chemical Society
Bulletin of the Korean Chemical Society Chemistry-General Chemistry
自引率
23.50%
发文量
182
期刊介绍: The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.
期刊最新文献
Masthead Cover Picture: Enhancing electrochemical xanthine detection: a two-step incubation strategy to minimize interference from ascorbic acid (BKCS 2/2025) Taeyeon Yoo, Seonhwa Park, Hyoeun Lee, Subin Park, Youngsuk Kim, Haesik Yang Correction to “Highly active cobalt(II) and copper(II) complexes supported by aminomethylquinoline mediating stereoselective ring-opening polymerization of rac-lactide” Highly blue-emissive CBZ-functionalized salen–In complexes: Influence of structural rigidity and donor substituent quantity Quantitative analysis of disaggregation properties of aggregation-induced emission luminogens (AIEgens) and off-the-shelf dyes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1